An algorithm for solving Feedback Nash stochasticdifferential games with an application to thePsychology of love

  1. Jorge Herrera de la Cruz 1
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Actas:
Mathematical Modelling in Engineering & Human Behaviour

Editorial: Instituto Universitario de Matemática Interdisciplinar

ISBN: 978-84-09-47037-2

Año de publicación: 2022

Páginas: 125-132

Tipo: Aportación congreso

Referencias bibliográficas

  • Dario Bauso, Dia Ben Mansour, Boualem Djehiche, Hamidou Tembine, and Raul Tempone. Mean-field games for marriage. PloS one, 9(5):e94933, 2014.
  • Alain Bensoussan, Chi Chung Siu, Sheung Chi Phillip Yam, and Hailiang Yang. A class of nonzero-sum stochastic differential investment and reinsurance games. Automatica, 50(8):2025– 2037, 2014.
  • Chao Deng, Xudong Zeng, and Huiming Zhu. Non-zero-sum stochastic differential reinsurance and investment games with default risk. European Journal of Operational Research, 264(3):1144–1158, 2018.
  • Jacob Engwerda. LQ dynamic optimization and differential games. John Wiley & Sons, 2005.
  • Maurizio Falcone. Numerical methods for differential games based on partial differential equations. International Game Theory Review, 8(02):231–272, 2006.
  • Gregory E. Fasshauer. Meshfree approximation methods with MATLAB, volume 6. World Scientific, 2007.
  • Gregory E Fasshauer and Jack G Zhang. On choosing “optimal” shape parameters for rbf approximation. Numerical Algorithms, 45(1-4):345–368, 2007.
  • Thierry Goudon and Pauline Lafitte. The lovebirds problem: why solve hamilton-jacobibellman equations matters in love affairs. Acta Applicandae Mathematicae, 136(1):147–165, 2015.
  • Jorge Herrera, Benjamin Ivorra, and Angel M Ramos. An algorithm for solving a class of ´ multiplayer feedback-nash differential games. Mathematical Problems in Engineering, 2019, 2019.
  • Jorge Herrera and José-Manuel Rey. Controlling forever love. PloS one, 16(12):e0260529, 2021.
  • Desmond J Higham. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM review, 43(3):525–546, 2001.
  • Ricardo Josa-Fombellida and Juan Pablo Rincón-Zapatero. New approach to stochastic optimal control. Journal of Optimization Theory and Applications, 135(1):163–177, 2007.
  • Jacek B Krawczyk and Stanislav Uryasev. Relaxation algorithms to find nash equilibria with economic applications. Environmental Modeling & Assessment, 5(1):63–73, 2000.
  • Harold Kushner and Paul G Dupuis. Numerical methods for stochastic control problems in continuous time, volume 24. Springer Science & Business Media, 2013.
  • Paola Mannucci. Nonzero-sum stochastic differential games with discontinuous feedback. SIAM journal on control and optimization, 43(4):1222–1233, 2004.
  • Jesús Marín-Solano and Ekaterina V Shevkoplyas. Non-constant discounting and differential games with random time horizon. Automatica, 47(12):2626–2638, 2011.
  • José-Manuel Rey. A mathematical model of sentimental dynamics accounting for marital dissolution. PloS one, 5(3):e9881, 2010.
  • Sergio Rinaldi, Fabio Della Rossa, Fabio Dercole, Alessandra Gragnani, and Pietro Landi. Modeling love dynamics, volume 89. World Scientific, 2015.