Mechanism of strand displacement DNA synthesis by the coordinated activities of human mitochondrial DNA polymerase and SSB

  1. Plaza-G.A., Ismael 2
  2. Lemishko, Kateryna M 2
  3. Crespo, Rodrigo 3
  4. Truong, Thinh Q 1
  5. Kaguni, Laurie S 4
  6. Cao-García, Francisco J 3
  7. Ciesielski, Grzegorz L 14
  8. Ibarra, Borja 25
  1. 1 Department of Chemistry, Auburn University at Montgomery , Montgomery , AL 36117, USA
  2. 2 Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia , Faraday 9 , 28049 Madrid , Spain
  3. 3 Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid , Pza. de Ciencias, 1 , 28040 Madrid , Spain
  4. 4 Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University , East Lansing , MI 48823, USA
  5. 5 Nanobiotecnología (IMDEA-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC) , 28049 Madrid , Spain
  6. 6 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Revista:
Nucleic Acids Research

ISSN: 0305-1048 1362-4962

Año de publicación: 2023

Volumen: 51

Número: 4

Páginas: 1750-1765

Tipo: Artículo

DOI: 10.1093/NAR/GKAD037 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Nucleic Acids Research

Información de financiación

Financiadores

Referencias bibliográficas

  • Kaguni, (2004), Annu. Rev. Biochem., 73, pp. 293, 10.1146/annurev.biochem.72.121801.161455
  • Krasich, (2017), Front. Biosci. (Landmark Ed.), 22, pp. 692, 10.2741/4510
  • Lee, (2006), J. Biol. Chem., 281, pp. 36236, 10.1074/jbc.M607964200
  • Stumpf, (2013), Cold Spring Harb. Perspect. Biol., 5, pp. a011395, 10.1101/cshperspect.a011395
  • Johnson, (2001), J. Biol. Chem., 276, pp. 38090, 10.1074/jbc.M106045200
  • Johnson, (2001), J. Biol. Chem., 276, pp. 38097, 10.1074/jbc.M106046200
  • Lee, (2010), J. Biol. Chem., 285, pp. 28105, 10.1074/jbc.M110.122283
  • Cerrón, (2019), Nucleic Acids Res., 47, pp. 5723, 10.1093/nar/gkz249
  • Miralles Fusté, (2014), PLoS Genet., 10, pp. e1004832, 10.1371/journal.pgen.1004832
  • Sullivan, (2020), J. Biol. Chem., 295, pp. 17802, 10.1074/jbc.RA120.015390
  • Takamatsu, (2002), EMBO Rep., 3, pp. 451, 10.1093/embo-reports/kvf099
  • Nicholls, (2014), Hum. Mol. Genet., 23, pp. 6147, 10.1093/hmg/ddu336
  • Uhler, (2016), Nucleic Acids Res., 44, pp. 5861, 10.1093/nar/gkw468
  • Zheng, (2008), Mol. Cell, 32, pp. 325, 10.1016/j.molcel.2008.09.024
  • Canceill, (1999), J. Biol. Chem., 274, pp. 27481, 10.1074/jbc.274.39.27481
  • Koc, (2015), Nucleic Acids Res., 43, pp. 4179, 10.1093/nar/gkv260
  • Stano, (2005), Nature, 435, pp. 370, 10.1038/nature03615
  • Farge, (2007), Nucleic Acids Res., 35, pp. 902, 10.1093/nar/gkl1116
  • Farr, (1999), J. Biol. Chem., 274, pp. 14779, 10.1074/jbc.274.21.14779
  • He, (2013), Mitochondrion, 13, pp. 592, 10.1016/j.mito.2013.08.003
  • Macao, (2015), Nat. Commun., 6, pp. 7303, 10.1038/ncomms8303
  • Manosas, (2012), Nucleic Acids Res., 40, pp. 6174, 10.1093/nar/gks253
  • Morin, (2012), Proc. Natl. Acad. Sci. U.S.A., 109, pp. 8115, 10.1073/pnas.1204759109
  • Jemt, (2015), Nucleic Acids Res., 43, pp. 9262, 10.1093/nar/gkv804
  • Falkenberg, (2020), Crit. Rev. Biochem. Mol. Biol., 55, pp. 509, 10.1080/10409238.2020.1818684
  • Manosas, (2012), Nucleic Acids Res., 40, pp. 6187, 10.1093/nar/gks254
  • Pandey, (2014), Cell Rep., 6, pp. 1129, 10.1016/j.celrep.2014.02.025
  • Ciesielski, (2016), Enzymes, 39, pp. 255, 10.1016/bs.enz.2016.03.006
  • Gustafsson, (2016), Annu. Rev. Biochem., 85, pp. 133, 10.1146/annurev-biochem-060815-014402
  • Korhonen, (2004), EMBO J., 23, pp. 2423, 10.1038/sj.emboj.7600257
  • Jiang, (2021), Sci. Adv., 7, pp. eabf8631, 10.1126/sciadv.abf8631
  • Kaur, (2018), Nucleic Acids Res., 46, pp. 11287, 10.1093/nar/gky875
  • Qian, (2017), J. Biol. Chem., 292, pp. 13068, 10.1074/jbc.M117.791392
  • Shereda, (2008), Crit. Rev. Biochem. Mol. Biol., 43, pp. 289, 10.1080/10409230802341296
  • Ciesielski, (2021), Front Genet, 12, pp. 721864, 10.3389/fgene.2021.721864
  • Ciesielski, (2015), J. Biol. Chem., 290, pp. 28697, 10.1074/jbc.M115.673707
  • Nandakumar, (2015), Elife, 4, pp. e06562, 10.7554/eLife.06562
  • Stephens, (1997), J. Biol. Chem., 272, pp. 28800, 10.1074/jbc.272.45.28800
  • Yuan, (2009), J. Biol. Chem., 284, pp. 31672, 10.1074/jbc.M109.050740
  • Longley, (1998), Biochemistry, 37, pp. 10529, 10.1021/bi980772w
  • Oliveira, (2009), Mitochondrial DNA: Methods and Protocols
  • Markham, (2005), Nucleic Acids Res., 33, pp. W577, 10.1093/nar/gki591
  • Ibarra, (2009), EMBO J., 28, pp. 2794, 10.1038/emboj.2009.219
  • Smith, (2003), Methods Enzymol., 361, pp. 134, 10.1016/S0076-6879(03)61009-8
  • Bocanegra, (2021), Comput. Struct. Biotechnol. J., 19, pp. 2057, 10.1016/j.csbj.2021.04.013
  • Cerrón, (2021), Methods Mol. Biol., 2281, pp. 289, 10.1007/978-1-0716-1290-3_18
  • Morin, (2015), Nucleic Acids Res., 43, pp. 3643, 10.1093/nar/gkv204
  • Smith, (1996), Science, 271, pp. 795, 10.1126/science.271.5250.795
  • Jarillo, (2017), PLoS One, 12, pp. e0174830, 10.1371/journal.pone.0174830
  • Morin, (2021), Methods Mol. Biol., 2281, pp. 273, 10.1007/978-1-0716-1290-3_17
  • Morin, (2017), Nucleic Acids Res., 45, pp. 7237, 10.1093/nar/gkx395
  • Morin, (2012), Cell Cycle, 11, pp. 2967, 10.4161/cc.21389
  • Shokri, (2008), Nucleic Acids Res., 36, pp. 5668, 10.1093/nar/gkn551
  • Shokri, (2006), J. Biol. Chem., 281, pp. 38689, 10.1074/jbc.M608460200
  • Suksombat, (2015), Elife, 4, pp. e08193, 10.7554/eLife.08193
  • Johnson, (2007), Proc. Natl. Acad. Sci. U. S. A., 104, pp. 5312, 10.1073/pnas.0701062104
  • Loparo, (2011), Proc. Natl. Acad. Sci. U.S.A., 108, pp. 3584, 10.1073/pnas.1018824108
  • Ciesielski, (2016), Methods Mol. Biol., 1351, pp. 223, 10.1007/978-1-4939-3040-1_17
  • Huber, (1987), J. Biol. Chem., 262, pp. 16224, 10.1016/S0021-9258(18)47719-8
  • Bratic, (2015), Nat. Commun., 6, pp. 8808, 10.1038/ncomms9808
  • Betterton, (2005), Phys. Rev. E, 71, pp. 011904, 10.1103/PhysRevE.71.011904
  • Johnson, (2007), Cell, 129, pp. 1299, 10.1016/j.cell.2007.04.038
  • Heussman, (2019), Farad. Discuss., 216, pp. 211, 10.1039/C8FD00245B
  • Jose, (2009), Proc. Natl. Acad. Sci. U.S.A., 106, pp. 4231, 10.1073/pnas.0900803106
  • Phelps, (2013), Proc. Natl. Acad. Sci. U.S.A., 110, pp. 17320, 10.1073/pnas.1314862110
  • Singh, (2020), EMBO J., 39, pp. e103367, 10.15252/embj.2019103367
  • Szymanski, (2015), EMBO J., 34, pp. 1959, 10.15252/embj.201591520
  • Raghunathan, (2000), Nat. Struct. Biol., 7, pp. 648, 10.1038/77943
  • Yang, (1997), Nat. Struct. Biol., 4, pp. 153, 10.1038/nsb0297-153
  • Curth, (1994), Eur. J. Biochem., 221, pp. 435, 10.1111/j.1432-1033.1994.tb18756.x
  • Lohman, (1994), Annu. Rev. Biochem., 63, pp. 527, 10.1146/annurev.bi.63.070194.002523
  • Naufer, (2021), Nucleic Acids Res., 49, pp. 1532, 10.1093/nar/gkaa1267
  • Hernandez, (2019), Semin. Cell Dev. Biol., 86, pp. 92, 10.1016/j.semcdb.2018.03.018
  • Kim, (1992), J. Biol. Chem., 267, pp. 15022, 10.1016/S0021-9258(18)42141-2
  • Marintcheva, (2006), J. Biol. Chem., 281, pp. 25831, 10.1074/jbc.M604601200
  • Hatch, (2007), Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 76, pp. 021916, 10.1103/PhysRevE.76.021916
  • Hatch, (2008), Nucleic Acids Res., 36, pp. 294, 10.1093/nar/gkm1014
  • Doublié, (1998), Nature, 391, pp. 251, 10.1038/34593
  • Sohl, (2015), Proc. Natl. Acad. Sci. U.S.A., 112, pp. 8596, 10.1073/pnas.1421733112
  • Lee, (2016), Nucleic Acids Res., 44, pp. 10691, 10.1093/nar/gkw863
  • Lionnet, (2007), Proc. Natl. Acad. Sci. U.S.A., 104, pp. 19790, 10.1073/pnas.0709793104
  • Manosas, (2010), Nucleic Acids Res., 38, pp. 5518, 10.1093/nar/gkq273
  • Delagoutte, (2001), Biochemistry, 40, pp. 4459, 10.1021/bi001306l
  • Al-Behadili, (2018), Nucleic Acids Res., 46, pp. 9471, 10.1093/nar/gky708
  • Vermulst, (2008), Nat. Genet., 40, pp. 392, 10.1038/ng.95