Estudio del Reforzamiento de Mampostería de Bloque de Hormigón mediante Ensayos Destructivos Aplicados a Pórticos de Acero con Juntas Apernadas
- Játiva, Jefferson
- Torres, Ivett
- Hernández Rodríguez, Luis Tinerfe 1
- Arévalo, Diego
- 1 Escuela Politécnica Nacional, Centro de Investigación de la Vivienda, Quito, Ecuador
ISSN: 2477-8990
Año de publicación: 2023
Título del ejemplar: Revista Politécnica
Volumen: 51
Número: 2
Páginas: 87-98
Tipo: Artículo
Otras publicaciones en: Revista Politécnica
Resumen
This study is based on the fact that there is little literature on the intervention of steel frame structures in which masonry infills are given a structural function from a seismic-resistant approach. However, an intervention strategy for masonry structures is a priority to prevent and mitigate seismic risk and reduce human losses. For this reason, a structural intervention system called enchape is presented. This system was applied in two prototypes of steel frames designed and built with a prequalified beam-column connection Bolted Flange Plate (BFP) and infill masonry to test them in three study scenarios through the application of cyclic lateral load in the laboratory and applying the type 1 protocol established in FEMA 461. For this purpose, materials and geometries used in construction were selected to develop a methodology for both construction and testing under laboratory conditions. By means of this work, the behavior of these prototypes when subjected to a cyclic lateral load is known, in this way a reinforcement methodology applicable to steel structures with masonry infills without seismic affectations and rehabilitation for those that have suffered some damage in their post-earthquake masonry is proposed.
Referencias bibliográficas
- Abdel-Hafez, L. M., Abouelezz, A. E. Y., & Elzefeary, F. F. (2014). Behavior of masonry strengthened infilled reinforced concrete frames under in-plane load. HBRC Journal, 11(2), 213–223. https://doi.org/10.1016/j.hbrcj.2014.06.005
- ACI 318S-19. (2019). Building Code Requirements for Structural Concrete and Commentary.
- AISC 358-16. (2016). Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications.
- Alcocer, S. M., Ruiz, J., Pineda, J. A., & Zepeda, J. A. (1996). Retrofitting of Confined Masonry Walls with Welded Wire Mesh. In Eleventh World Conference on Earthquake Engineering (pp. 1–8). Elsevier Science.
- Angulo, L. G., & López, C. E. (2008). Reforzamiento de mampostería de ladrillo artesanal. [Tesis de grado, Escuela Politécnica Nacional] BIBDIGITAL. http://bibdigital.epn.edu.ec/handle/15000/1069
- ANSI/AISC 341-16. (2016). Seismic Provisions for Structural Steel Buildings.
- ASTM E2126-19. (2019). Standard Test Methods for Cyclic (Reversed) Load Test for Shear Resistance of Vertical Elements of the Lateral Force Resisting Systems for Buildings.
- ASTM F3125/F3125M-19. (2019). Standard Specification for High Strength Structural Bolts and Assemblies, Steel and Alloy Steel, Heat Treated, Inch Dimensions 120 ksi and 150 ksi Minimum Tensile Strength, and Metric Dimensions 830 MPa and 1040 MPa Minimum Tensile Strength.
- Borja, L., & Torres, M. (2015). Diseño del Reforzamiento Estructural de un Edificio de Departamentos de 4 Plantas Ubicado en el Sector Quitumbe, Ciudad de Quito, Provincia de Pichincha. [Tesis de grado, Escuela Politénica Nacional]. BIBDIGITAL.
- https://bibdigital.epn.edu.ec/handle/15000/11859
- Crisafulli, F. J. (1997). Seismic behaviour of reinforced concrete structures with masory infills. [Tesis de doctorado, University of Canterbury]. BIBDIGITAL. https://www.researchgate.net/publication/29487883_Seismic_behaviour_of_reinforced_concrete_structures_with_masonry_infills/link/00b7d51f79eebb79cd000000/download
- Dawe, J. L., & Seah, C. K. (1989). Behaviour of masonry infilled steel frames. Canadian Journal of Civil Engineering, 16(6), 865–876. https://doi.org/10.1139/l89-129
- El-Dakhakhni, W. W., Elgaaly, M., & Hamid, A. A. (2003). Three-Strut Model for Concrete Masonry-Infilled Steel Frames. Journal of Structural Engineering, 129(2), 177–185. https://doi.org/10.1061/(asce)0733-9445(2003)129:2(177)
- FEMA 306. (1998). Evaluation Of Earthquake Damaged Concrete And Masonry Wall Buildings.
- FEMA 461. (2007). Interim Testing Protocols for Ddtermining the Seismic Performance Characteristics of Structural and Nonstructural Components.
- Ghobadi, M. S., Jazany, R. A., & Farshchi, H. (2019). In situ repair technique of infill masonry walls in steel frames damaged after an earthquake. Engineering Structures, 178, 665–679. https://doi.org/10.1016/j.engstruct.2018.10.022
- Kahrizi, M., & TahamouliRoudsari, M. (2020). Experimental study on properties of masonry infill walls connected to steel frames with different connection details. SDHM Structural Durability and Health Monitoring, 14(2), 165–185. https://doi.org/10.32604/SDHM.2020.07816
- Liu, Y., & Manesh, P. (2013). Concrete masonry infilled steel frames subjected to combined in-plane lateral and axial loading - An experimental study. Engineering Structures, 52, 331–339. https://doi.org/10.1016/j.engstruct.2013.02.038
- Moghadam, H. A., Mohammadi, M. G., & Ghaemian, M. (2006). Experimental and analytical investigation into crack strength determination of infilled steel frames. Journal of Constructional Steel Research, 62(12), 1341–1352. https://doi.org/10.1016/j.jcsr.2006.01.002
- Mosquera, C. & Rosero, M. (2022)Estudio del Reforzamiento de Mampostería de Bloque Mediante Técnica de Enchape, en Sistemas Estructurales Mixtos Acero-Hormigón con Uniones Soldadas. [Tesis de grado, Escuela Politécnica Nacional]. BIBDIGITAL. http://bibdigital.epn.edu.ec/handle/15000/22039
- NEC-SE-DS. (2015). Peligro sísmico diseño sismo resistente.
- Pachano, F. A. (2018). Determinación de parámetros mecánicos para modelos no lineales de mampostería de relleno en pórticos de hormigón armado obtenidos de manera experimental. [Tesis de Maestría, Escuela Politécnica Nacional]. BIBDIGITAL. http://bibdigital.epn.edu.ec/handle/15000/19734