The Effects of Sr Content on the Performance of Nd<sub>1–<i>x</i></sub>Sr<sub><i>x</i></sub>CoO<sub>3−δ</sub> Air-Electrode Materials for Intermediate Temperature Solid Oxide Fuel Cells under Operational Conditions
- Muñoz-Gil, Daniel 2
- Azcondo, M. Teresa 3
- Ritter, Clemens 4
- Fabelo, Oscar 4
- Pérez-Coll, Domingo 2
- Mather, Glenn C. 2
- Amador, Ulises 3
- Boulahya, Khalid 1
- 1 Departamento de Química Inorgánica, Facultad Ciencias Químicas, Universidad Complutense, E-28040 Madrid, Spain
- 2 Instituto de Cerámica y Vidrio, CSIC, Cantoblanco, 28049 Madrid, Spain
- 3 Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU San Pablo, E-28668, Boadilla del Monte, Madrid, Spain
- 4 Institut Laue-Langevin, BP 156-38042 Grenoble, Cedex 9, France
ISSN: 0020-1669, 1520-510X
Año de publicación: 2020
Volumen: 59
Número: 17
Páginas: 12111-12121
Tipo: Artículo
Otras publicaciones en: Inorganic Chemistry
Resumen
STRACT: The potential of the perovskite system Nd1−xSrxCoO3−δ (x = 1/3 and 2/3)as cathode material for solid oxide fuel cells (SOFCs) has been investigated via detailedstructural, electrical, and electrochemical characterization. The average structure of x = 1/3is orthorhombic with a complex microstructure consisting of intergrown, adjacent,perpendicularly oriented domains. This orthorhombic symmetry remains throughout thetemperature range 373−1073 K, as observed by neutron powder diffraction. A higher Srcontent of x = 2/3 leads to stabilization of the cubic perovskite with a homogeneousmicrostructure and with a higher oxygen vacancy content and cobalt oxidation state thanthe orthorhombic phase at SOFC operation temperature. Both materials are p-typeelectronic conductors with high total conductivities of 690 and 1675 S·cm−1 at 473 K in airfor x = 1/3 and 2/3, respectively. Under working conditions, both compounds exhibitsimilar electronic conductivities, since x = 2/3 loses more oxygen on heating than x = 1/3,associated with a greater loss of p-type charger carriers. However, composite cathodesprepared with Nd1/3Sr2/3CoO3−δ and Ce0.8Gd0.2O2−δ present lower ASR values (0.10 Ω·cm2 at 973 K in air) than compositesprepared with Nd2/3Sr1/3CoO3−δ and Ce0.8Gd0.2O2−δ (0.34 Ω·cm2). The high activity for the oxygen electrochemical reaction atintermediate temperatures is likely attributable to a large disordered oxygen-vacancy concentration, resulting in a very promisingSOFC cathode for real devices.
Información de financiación
Financiadores
-
Ministerio de Econom?a y Competitividad
- MAT2016-78362-C4- 4-R
- MAT2016-78362-C4-1-R
Referencias bibliográficas
- Mitchell R. H., (2002), Perovskite: Modern and Ancient
- 10.1002/apj.2000
- 10.1002/celc.201500382
- 10.1016/S1464-2859(01)80254-6
- 10.1002/adma.200502098
- 10.1149/2.018212jes
- 10.1016/j.memsci.2008.03.074
- 10.1149/1.1837262
- 10.1149/1.1838789
- 10.1021/cr020724o
- 10.1016/j.jpowsour.2007.07.076
- 10.1016/S0167-2738(02)00773-7
- 10.1016/j.ssi.2006.01.017
- 10.1002/cssc.201700648
- 10.1016/S0167-2738(02)00406-X
- 10.1021/jacs.6b03520
- 10.1149/1.2085761
- 10.1149/1.1837252
- 10.1016/0167-2738(95)00114-L
- Raveau B., (2012), Cobalt Oxides: From Crystal Chemistry to Physics, 10.1002/9783527645527
- 10.1016/S0167-2738(02)00317-X
- 10.1016/j.ssi.2016.09.007
- 10.1021/cm902640j
- 10.1007/s10008-008-0611-6
- 10.1016/S0167-2738(02)00131-5
- 10.1016/S0167-2738(97)00360-3
- 10.1149/1.2172572
- 10.1016/j.ijhydene.2009.09.053
- 10.1149/1.1378290
- 10.1016/j.jpowsour.2011.06.086
- 10.1016/j.ssi.2004.09.021
- 10.1021/cm902687z
- 10.1149/1.1828243
- 10.1016/0167-2738(87)90039-7
- 10.1016/j.electacta.2012.07.090
- 10.1016/0921-4526(93)90108-I
- 10.1039/c1dt10196j
- Johnson, J. ZView: A software Program for IES Analysis, version 2.9c; Scribner Associates Inc, 2005.
- 10.1039/C4DT01337A
- 10.1107/S0567739476001551
- 10.1107/S0567740872007976
- 10.1021/acs.inorgchem.6b02066
- 10.1088/0953-8984/15/49/010
- 10.1088/0953-8984/21/23/235403
- 10.1088/0953-8984/25/13/135902
- 10.1016/S0167-2738(01)00952-3
- 10.1039/b820976f
- 10.1021/acs.chemmater.6b01095
- 10.1088/0953-8984/12/45/101
- 10.1016/j.solidstatesciences.2019.03.023
- 10.1016/j.ijhydene.2011.01.150
- 10.1016/j.ceramint.2011.09.037
- 10.1016/j.materresbull.2011.09.022
- 10.1016/j.jpowsour.2009.10.062
- 10.1021/acsami.9b22966
- 10.1016/j.jssc.2012.03.056
- 10.1103/PhysRevB.69.140403
- 10.1021/cm801569j
- 10.1146/annurev.matsci.33.022802.093258
- 10.1016/S0167-2738(98)00179-9
- 10.1149/2.011303jes
- 10.1002/aenm.201500537
- 10.1002/anie.200460081
- 10.1002/anie.200700987