The Effects of Sr Content on the Performance of Nd<sub>1–<i>x</i></sub>Sr<sub><i>x</i></sub>CoO<sub>3−δ</sub> Air-Electrode Materials for Intermediate Temperature Solid Oxide Fuel Cells under Operational Conditions

  1. Muñoz-Gil, Daniel 2
  2. Azcondo, M. Teresa 3
  3. Ritter, Clemens 4
  4. Fabelo, Oscar 4
  5. Pérez-Coll, Domingo 2
  6. Mather, Glenn C. 2
  7. Amador, Ulises 3
  8. Boulahya, Khalid 1
  1. 1 Departamento de Química Inorgánica, Facultad Ciencias Químicas, Universidad Complutense, E-28040 Madrid, Spain
  2. 2 Instituto de Cerámica y Vidrio, CSIC, Cantoblanco, 28049 Madrid, Spain
  3. 3 Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU San Pablo, E-28668, Boadilla del Monte, Madrid, Spain
  4. 4 Institut Laue-Langevin, BP 156-38042 Grenoble, Cedex 9, France
Revista:
Inorganic Chemistry

ISSN: 0020-1669 1520-510X

Año de publicación: 2020

Volumen: 59

Número: 17

Páginas: 12111-12121

Tipo: Artículo

DOI: 10.1021/ACS.INORGCHEM.0C01049 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Inorganic Chemistry

Resumen

STRACT: The potential of the perovskite system Nd1−xSrxCoO3−δ (x = 1/3 and 2/3)as cathode material for solid oxide fuel cells (SOFCs) has been investigated via detailedstructural, electrical, and electrochemical characterization. The average structure of x = 1/3is orthorhombic with a complex microstructure consisting of intergrown, adjacent,perpendicularly oriented domains. This orthorhombic symmetry remains throughout thetemperature range 373−1073 K, as observed by neutron powder diffraction. A higher Srcontent of x = 2/3 leads to stabilization of the cubic perovskite with a homogeneousmicrostructure and with a higher oxygen vacancy content and cobalt oxidation state thanthe orthorhombic phase at SOFC operation temperature. Both materials are p-typeelectronic conductors with high total conductivities of 690 and 1675 S·cm−1 at 473 K in airfor x = 1/3 and 2/3, respectively. Under working conditions, both compounds exhibitsimilar electronic conductivities, since x = 2/3 loses more oxygen on heating than x = 1/3,associated with a greater loss of p-type charger carriers. However, composite cathodesprepared with Nd1/3Sr2/3CoO3−δ and Ce0.8Gd0.2O2−δ present lower ASR values (0.10 Ω·cm2 at 973 K in air) than compositesprepared with Nd2/3Sr1/3CoO3−δ and Ce0.8Gd0.2O2−δ (0.34 Ω·cm2). The high activity for the oxygen electrochemical reaction atintermediate temperatures is likely attributable to a large disordered oxygen-vacancy concentration, resulting in a very promisingSOFC cathode for real devices.

Información de financiación

Financiadores

Referencias bibliográficas

  • Mitchell R. H., (2002), Perovskite: Modern and Ancient
  • 10.1002/apj.2000
  • 10.1002/celc.201500382
  • 10.1016/S1464-2859(01)80254-6
  • 10.1002/adma.200502098
  • 10.1149/2.018212jes
  • 10.1016/j.memsci.2008.03.074
  • 10.1149/1.1837262
  • 10.1149/1.1838789
  • 10.1021/cr020724o
  • 10.1016/j.jpowsour.2007.07.076
  • 10.1016/S0167-2738(02)00773-7
  • 10.1016/j.ssi.2006.01.017
  • 10.1002/cssc.201700648
  • 10.1016/S0167-2738(02)00406-X
  • 10.1021/jacs.6b03520
  • 10.1149/1.2085761
  • 10.1149/1.1837252
  • 10.1016/0167-2738(95)00114-L
  • Raveau B., (2012), Cobalt Oxides: From Crystal Chemistry to Physics, 10.1002/9783527645527
  • 10.1016/S0167-2738(02)00317-X
  • 10.1016/j.ssi.2016.09.007
  • 10.1021/cm902640j
  • 10.1007/s10008-008-0611-6
  • 10.1016/S0167-2738(02)00131-5
  • 10.1016/S0167-2738(97)00360-3
  • 10.1149/1.2172572
  • 10.1016/j.ijhydene.2009.09.053
  • 10.1149/1.1378290
  • 10.1016/j.jpowsour.2011.06.086
  • 10.1016/j.ssi.2004.09.021
  • 10.1021/cm902687z
  • 10.1149/1.1828243
  • 10.1016/0167-2738(87)90039-7
  • 10.1016/j.electacta.2012.07.090
  • 10.1016/0921-4526(93)90108-I
  • 10.1039/c1dt10196j
  • Johnson, J. ZView: A software Program for IES Analysis, version 2.9c; Scribner Associates Inc, 2005.
  • 10.1039/C4DT01337A
  • 10.1107/S0567739476001551
  • 10.1107/S0567740872007976
  • 10.1021/acs.inorgchem.6b02066
  • 10.1088/0953-8984/15/49/010
  • 10.1088/0953-8984/21/23/235403
  • 10.1088/0953-8984/25/13/135902
  • 10.1016/S0167-2738(01)00952-3
  • 10.1039/b820976f
  • 10.1021/acs.chemmater.6b01095
  • 10.1088/0953-8984/12/45/101
  • 10.1016/j.solidstatesciences.2019.03.023
  • 10.1016/j.ijhydene.2011.01.150
  • 10.1016/j.ceramint.2011.09.037
  • 10.1016/j.materresbull.2011.09.022
  • 10.1016/j.jpowsour.2009.10.062
  • 10.1021/acsami.9b22966
  • 10.1016/j.jssc.2012.03.056
  • 10.1103/PhysRevB.69.140403
  • 10.1021/cm801569j
  • 10.1146/annurev.matsci.33.022802.093258
  • 10.1016/S0167-2738(98)00179-9
  • 10.1149/2.011303jes
  • 10.1002/aenm.201500537
  • 10.1002/anie.200460081
  • 10.1002/anie.200700987