First Principles Study on the Features of CaxSr2−xTa2O7 (x = 0, 1) as a Photocatalytic Material

  1. Gómez-Toledo, Marianela 1
  2. Boulahya, Khalid 1
  3. Arroyo-de Dompablo, M. Elena 1
  1. 1 Departamento de Química Inorgánica, Universidad Complutense de Madrid, 28040 Madrid, Spain
Actas:
ASEC 2022

Año de publicación: 2022

Tipo: Aportación congreso

DOI: 10.3390/ASEC2022-13794 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

With hydrogen as one of the energetic vectors craved for use in the future, the successful de-carbonization of the energy sector will require an increase in hydrogen production from renewable resources. Materials that are able to catalyze the water-splitting reaction through sunlight absorption have been widely studied as an adequate solution for green hydrogen generation. Among the proposed tantalum-based oxide materials, Sr2Ta2O7 displays moderate photocatalytic activity. Aiming to improve the photocatalytic properties by means of compositional modifications, this work presents a DFT study of the Sr substitution with Ca. The structural, energetic, and electronic features of the phases of CaxSr2−xTa2O7 (0 < x < 1) have been examined. The computational results utilizing the SCAN functional show that there is a slight decrement in the band gap value (from 3.65 eV for x = 0 to 3.50 eV for x = 1) concomitant to a minor distortion of the crystal structure.

Referencias bibliográficas

  • Abdin, (2020), Renew. Sustain. Energy Rev., 120, pp. 109620, 10.1016/j.rser.2019.109620
  • Dawood, (2020), Int. J. Hydrog. Energy, 45, pp. 3847, 10.1016/j.ijhydene.2019.12.059
  • Ishaq, (2022), Int. J. Hydrog. Energy, 47, pp. 26238, 10.1016/j.ijhydene.2021.11.149
  • Acar, (2018), Compr. Energy Syst., 3–5, pp. 1
  • Wang, (2019), Chem. Soc. Rev., 48, pp. 2109, 10.1039/C8CS00542G
  • Osterloh, (2008), Chem. Mater., 20, pp. 35, 10.1021/cm7024203
  • Kato, (1998), Chem. Phys. Lett., 295, pp. 487, 10.1016/S0009-2614(98)01001-X
  • Kudo, (2000), J. Phys. Chem. B, 104, pp. 571, 10.1021/jp9919056
  • Ishizawa, (1976), Acta Crystallogr. Sect. B, B32, pp. 2564, 10.1107/S0567740876008261
  • Liu, (2013), J. Phys. Chem. C, 117, pp. 5043, 10.1021/jp310945e
  • Peng, (2017), RSC Adv., 7, pp. 40922, 10.1039/C7RA07113B
  • Kim, (2009), Resour. Process., 56, pp. 138, 10.4144/rpsj.56.138
  • (1996), Phys. Rev. B, 54, pp. 11169, 10.1103/PhysRevB.54.11169
  • Kresse, (1999), Phys. Rev. B, 59, pp. 1758, 10.1103/PhysRevB.59.1758
  • Bloch, (1994), Phys. Rev. B, 50, pp. 17953, 10.1103/PhysRevB.50.17953
  • Sun, (2015), Phys. Rev. Lett., 115, pp. 036402, 10.1103/PhysRevLett.115.036402
  • Blochl, (1994), Phys. Rev. B, 49, pp. 16223, 10.1103/PhysRevB.49.16223
  • Shannon, (1976), Acta Crystallogr. A, 32, pp. 751, 10.1107/S0567739476001551
  • Borlido, (2020), NPJ Comput. Mater., 6, pp. 96, 10.1038/s41524-020-00360-0
  • Eng, (2003), J. Solid State Chem., 175, pp. 94, 10.1016/S0022-4596(03)00289-5