FTIR-ATR detection method for emerging C3-plants-derivated adulterants in honey: Beet, dates, and carob syrups

  1. Cárdenas-Escudero, J.
  2. Galán-Madruga, D.
  3. Cáceres, J.O.
Revista:
Talanta

ISSN: 0039-9140

Año de publicación: 2023

Volumen: 265

Páginas: 124768

Tipo: Artículo

DOI: 10.1016/J.TALANTA.2023.124768 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Talanta

Resumen

The European Union Publications Office has recently presented a report on the European Union's coordinated action with the Joint Research Centre to determine certain fraudulent practices in the honey sector, in which it has been indicated that 74% of the samples analyzed, imported from China, and 93% of the samples analyzed, imported from Turkey, the two largest honey producers worldwide, presented at least one indicator of exogenous sugar or suspicion of being adulterated. This situation has revealed the critical state of the problem of honey adulteration worldwide and the need to develop analytical techniques for its detection. Even though the adulteration of honey is carried out in a general way with sweetened syrups derived from C4 plants, recent studies have indicated the emerging use of syrups derived from C3 plants for the adulteration of honey. This kind of adulteration makes it impossible to analyze its detection using official analysis techniques. In this work, we have developed a fast, simple, and economical method based on the Fourier transform infrared spectroscopy technique, with attenuated total reflectance, for the qualitative, quantitative, and simultaneous determination of beetroot, date, and carob syrups, derived from of C3 plants; whose available bibliography is very scarce and analytically not very conclusive for its use by the authorities. The proposed method has been based on the establishment of the spectral differences between honey and the mentioned syrups at eight different points in the spectral region between 1200 and 900 cm−1 of the mid-infrared, characteristic of the vibrational modes of carbohydrates in honey, which allows the pre-discrimination of the presence or absence of the syrups studied, and their subsequent quantification, with precision levels lower than 2.0% of the relative standard deviation and relative errors lower than 2.0% (m/m).

Referencias bibliográficas

  • Council, (2021)
  • Council, (2014)
  • Pita-Calvo, (2017), J. Agric. Food Chem., 65, pp. 690, 10.1021/acs.jafc.6b04776
  • White, (1957), Bee World, 38, pp. 57, 10.1080/0005772X.1957.11094976
  • Wani, (2020), pp. 195
  • Hossain, (2020), Heliyon, 6, 10.1016/j.heliyon.2020.e05798
  • Synaridou, (2020), J. Pharmaceut. Innov., 15, pp. 404, 10.1007/s12247-019-09389-1
  • Elbargisy, (2020), 1, pp. 279
  • Cianciosi, (2018), Molecules, 23, pp. 2322, 10.3390/molecules23092322
  • Pasupuleti, (2017), Oxid. Med. Cell. Longev., 2017, 10.1155/2017/1259510
  • Fazalda, (2018), Evid. base Compl. Alternative Med., 2018
  • Nasuti, (2006), Nutr. Res., 26, pp. 130, 10.1016/j.nutres.2006.02.007
  • Idrus, (2020), Int. J. Environ. Res. Publ. Health, 17, pp. 3613, 10.3390/ijerph17103613
  • Silva, (2021), Food Res. Int., 141, 10.1016/j.foodres.2020.110086
  • Ahmed, (2018), Oxid. Med. Cell. Longev., 2018, 10.1155/2018/8367846
  • Azman, (2019), J. Basic Med. Sci., 22, pp. 1368
  • Iftikhar, (2022), J. Apicult. Res., pp. 1
  • Terzo, (2020), J. Nutr. Biochem., 82, 10.1016/j.jnutbio.2020.108401
  • Ramsay, (2019), J. Oral Biosci., 61, pp. 32, 10.1016/j.job.2018.12.003
  • Zaidi, (2019), J. Pharmacogn. Phytochem., 8, pp. 1056
  • (2020), pp. 195
  • Waheed, (2019), Clin. Nutr., 38, pp. 2499, 10.1016/j.clnu.2018.12.019
  • Cárdenas-Escudero, (2023), Food Funct., 14, pp. 602, 10.1039/D2FO02715A
  • Se, (2019), J. Food Compos. Anal., 80, pp. 16, 10.1016/j.jfca.2019.04.001
  • Production, (2021)
  • Erdös, (2018)
  • da Silva, (2016), Food Chem., 196, pp. 309, 10.1016/j.foodchem.2015.09.051
  • Siddiqui, (2017), Food Chem., 217, pp. 687, 10.1016/j.foodchem.2016.09.001
  • (2011)
  • Soares, (2017), Compr. Rev. Food Sci. Food Saf., 16, pp. 1072, 10.1111/1541-4337.12278
  • Fakhlaei, (2020), The Toxic Impact of Honey Adulteration: A Review, Foods, 9, pp. 1538
  • Wang, (2015), Food Chem., 172, pp. 669, 10.1016/j.foodchem.2014.09.044
  • Soares, (2017), Compr. Rev. Food Sci. Food Saf., 16, pp. 1072, 10.1111/1541-4337.12278
  • Shapiro, (2008), Am. J. Physiol. Regul. Integr. Comp. Physiol., 295, pp. R1370, 10.1152/ajpregu.00195.2008
  • Samat, (2017), Evid. base Compl. Alternative Med., 2017
  • (1998), pp. 4
  • Bertelli, (2010), J. Agric. Food Chem., 58, pp. 8495, 10.1021/jf101460t
  • Spiteri, (2015), Food Chem., 189, pp. 60, 10.1016/j.foodchem.2014.11.099
  • Xue, (2013), J. Agric. Food Chem., 61, pp. 7488, 10.1021/jf401912u
  • Yang, (2020), Lebensm. Wiss. Technol., 132, 10.1016/j.lwt.2020.109837
  • Xie, (2022), J. Food Compos. Anal., 108, 10.1016/j.jfca.2022.104444
  • Amiry, (2017), Food Chem., 224, pp. 390, 10.1016/j.foodchem.2016.12.025
  • Shiddiq, (2019), J. Phys. Conf., 10.1088/1742-6596/1351/1/012022
  • Goulas, (2021), Food and Environ. Safet. J., 20, pp. 205
  • (2019)
  • Parliament, (2019), pp. 25
  • Ždiniaková, (2023)
  • Zimmermann, (2013), Appl. Spectrosc., 67, pp. 892, 10.1366/12-06723
  • Menges, (2021)
  • Sivakesava, (2001), J. Sci. Food Agric., 81, pp. 683, 10.1002/jsfa.858
  • Anjos, (2015), Food Chem., 169, pp. 218, 10.1016/j.foodchem.2014.07.138
  • Sylvie, (2009), Food Chem., 115, pp. 1133, 10.1016/j.foodchem.2008.12.100
  • Kasprzyk, (2018), Food Control, 84, pp. 33, 10.1016/j.foodcont.2017.07.015
  • Ganaie, (2021), J. Food Sci. Technol., 58, pp. 4139, 10.1007/s13197-020-04878-5
  • Formosa, (2020), Foods, 9, pp. 710, 10.3390/foods9060710
  • Ali, (2021), Molecules, 26, pp. 1232, 10.3390/molecules26051232
  • Gallardo-Velázquez, (2009), Food Res. Int., 42, pp. 313, 10.1016/j.foodres.2008.11.010
  • Se, (2018), Food Res. Int., 105, pp. 453, 10.1016/j.foodres.2017.11.012
  • Se, (2018), J. Food Compos. Anal., 66, pp. 46, 10.1016/j.jfca.2017.12.002
  • Cárdenas-Escudero, (2023), Talanta, 253, 10.1016/j.talanta.2022.123961
  • Movasaghi, (2008), Appl. Spectrosc. Rev., 43, pp. 134, 10.1080/05704920701829043
  • Kelly, (2004), J. Agric. Food Chem., 52, pp. 33, 10.1021/jf034985q
  • Tewari, (2004), J. Agric. Food Chem., 52, pp. 3237, 10.1021/jf035176+
  • Huang, (2020), Spectrochim. Acta Mol. Biomol. Spectrosc., 235, 10.1016/j.saa.2020.118297
  • Sivakesava, (2001), J. Food Sci., 66, pp. 787, 10.1111/j.1365-2621.2001.tb15173.x