Multiple Instances of Adaptive Evolution in Aquaporins of Amphibious Fishes

  1. Lorente Martínez, Héctor 3
  2. Agorreta Calvo, Ainhoa 3
  3. Irisarri Aedo, Iker 1
  4. Zardoya, Rafael 2
  5. Edwards, Scott V. 4
  6. San Mauro, Diego 3
  1. 1 Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum of Nature Hamburg, 20146 Hamburg, Germany
  2. 2 Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 28006 Madrid, Spain
  3. 3 Department of Biodiversity, Ecology, and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
  4. 4 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
Revista:
Biology

ISSN: 2079-7737

Año de publicación: 2023

Volumen: 12

Número: 6

Páginas: 846

Tipo: Artículo

DOI: 10.3390/BIOLOGY12060846 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Biology

Resumen

Aquaporins (AQPs) are a highly diverse family of transmembrane proteins involved inosmotic regulation that played an important role in the conquest of land by tetrapods. However,little is known about their possible implication in the acquisition of an amphibious lifestyle inactinopterygian fishes. Herein, we investigated the molecular evolution of AQPs in 22 amphibiousactinopterygian fishes by assembling a comprehensive dataset that was used to (1) catalogue AQPparalog members and classes; (2) determine the gene family birth and death process; (3) test forpositive selection in a phylogenetic framework; and (4) reconstruct structural protein models. Wefound evidence of adaptive evolution in 21 AQPs belonging to 5 different classes. Almost half of thetree branches and protein sites that were under positive selection were found in the AQP11 class. Thedetected sequence changes indicate modifications in molecular function and/or structure, whichcould be related to adaptation to an amphibious lifestyle. AQP11 orthologues appear to be the mostpromising candidates to have facilitated the processes of the water-to-land transition in amphibiousfishes. Additionally, the signature of positive selection found in the AQP11b stem branch of theGobiidae clade suggests a possible case of exaptation in this clade.

Información de financiación

Financiadores

  • Ministry of Science and Innovation of Spain
    • PID2020-115481GB-I00
  • Complutense University of Madrid in partnership with the Real Colegio Complutense at Harvard University
    • RCC-UCM CT63/19-CT64/19

Referencias bibliográficas

  • Graham, J.B. (1997). Air-Breathing Fishes: Evolution, Diversity and Adaptation, Academic Press.
  • Schluter, D. (2000). The Ecology of Adaptive Radiation, OUP Oxford.
  • Nosil, P. (2012). Ecological Speciation, Oxford University Press.
  • Long, (2004), Physiol. Biochem. Zool., 77, pp. 700, 10.1086/425183
  • Laurin, M. (2010). How Vertebrates Left the Water, University of California Press.
  • Sayer, (2005), Fish Fish., 6, pp. 186, 10.1111/j.1467-2979.2005.00193.x
  • Ord, (2016), Evolution, 70, pp. 1747, 10.1111/evo.12971
  • Wright, (2016), J. Exp. Biol., 219, pp. 2245, 10.1242/jeb.126649
  • Bridges, (2015), Am. Zool., 28, pp. 79, 10.1093/icb/28.1.79
  • Fernandes, M.N., Rantin, F.T., Glass, M.L., and Kapoor, B. (2007). Fish Respiration and Environment, Science Publishers.
  • LeBlanc, (2010), Physiol. Biochem. Zool., 83, pp. 932, 10.1086/656307
  • Frick, (2002), J. Exp. Biol., 205, pp. 79, 10.1242/jeb.205.1.79
  • Frick, (2002), J. Exp. Biol., 205, pp. 91, 10.1242/jeb.205.1.91
  • Chew, (2005), Physiol. Biochem. Zool., 78, pp. 620, 10.1086/430233
  • Randall, (2015), Physiol. Biochem. Zool., 77, pp. 783, 10.1086/423745
  • Ip, (2004), Physiol. Biochem. Zool., 7, pp. 768, 10.1086/422057
  • Ip, (2004), J. Exp. Biol., 207, pp. 787, 10.1242/jeb.00788
  • Davenport, (1990), J. Fish Biol., 37, pp. 175, 10.1111/j.1095-8649.1990.tb05938.x
  • Pace, (2014), J. Fish Biol., 84, pp. 639, 10.1111/jfb.12318
  • Agre, (2003), FEBS Lett., 555, pp. 72, 10.1016/S0014-5793(03)01083-4
  • Agre, (1993), Am. J. Physiol., 265, pp. F463
  • Connolly, (1998), Int. J. Biochem. Cell Biol., 30, pp. 169, 10.1016/S1357-2725(97)00124-6
  • Walz, (1997), Nature, 387, pp. 624, 10.1038/42512
  • Heymann, (1999), News Physiol. Sci., 14, pp. 187
  • Ikeda, (2011), J. Biol. Chem., 286, pp. 3342, 10.1074/jbc.M110.180968
  • Abascal, (2014), Biochim. Biophys. Acta Gen. Subj., 1840, pp. 1468, 10.1016/j.bbagen.2013.12.001
  • Heymann, (2000), J. Mol. Biol., 295, pp. 1039, 10.1006/jmbi.1999.3413
  • Sui, (2001), Nature, 414, pp. 872, 10.1038/414872a
  • Hedfalk, (2010), FEBS Lett., 584, pp. 2580, 10.1016/j.febslet.2010.04.037
  • Bestetti, (2020), Redox Biol., 28, pp. 101326, 10.1016/j.redox.2019.101326
  • Finn, (2015), Biol. Bull., 229, pp. 6, 10.1086/BBLv229n1p6
  • Zardoya, (2005), Biol. Cell, 97, pp. 397, 10.1042/BC20040134
  • Finn, R.N., Chauvigné, F., Hlidberg, J.B., Cutler, C.P., and Cerdà, J. (2014). The Lineage—Specific Evolution of Aquaporin Gene Clusters Facilitated Tetrapod Terrestrial Adaptation. PLoS ONE, 9.
  • Madsen, (2015), Biol. Bull., 229, pp. 70, 10.1086/BBLv229n1p70
  • Ip, Y.K., Soh, M.M.L., Chen, X.L., Ong, J.L.Y., Chng, Y.R., Ching, B., Wong, W.P., Lam, S.H., and Chew, S.F. (2013). Molecular Characterization of Branchial Aquaporin 1aa and Effects of Seawater Acclimation, Emersion or Ammonia Exposure on Its MRNA Expression in the Gills, Gut, Kidney and Skin of the Freshwater Climbing Perch, Anabas Testudineus. PLoS ONE, 8.
  • Agorreta, (2018), Org. Divers. Evol., 18, pp. 499, 10.1007/s13127-018-0382-6
  • Lorente-Martínez, H., Agorreta, A., and San Mauro, D. (2022). Genomic Fishing and Data Processing for Molecular Evolution Research. Methods Protoc., 5.
  • Altschul, (1990), J. Mol. Biol., 215, pp. 403, 10.1016/S0022-2836(05)80360-2
  • Katoh, (2019), Brief. Bioinform., 20, pp. 1160, 10.1093/bib/bbx108
  • Kearse, (2012), Bioinformatics, 28, pp. 1647, 10.1093/bioinformatics/bts199
  • Jones, (1992), Bioinformatics, 8, pp. 275, 10.1093/bioinformatics/8.3.275
  • Yang, (1994), J. Mol. Evol., 39, pp. 306, 10.1007/BF00160154
  • Reeves, (1992), J. Mol. Evol., 35, pp. 17, 10.1007/BF00160257
  • Abascal, (2005), Bioinformatics, 21, pp. 2104, 10.1093/bioinformatics/bti263
  • Hoang, (2018), Mol. Biol. Evol., 35, pp. 518, 10.1093/molbev/msx281
  • Nguyen, (2015), Mol. Biol. Evol., 32, pp. 268, 10.1093/molbev/msu300
  • Guindon, (2010), Syst. Biol., 59, pp. 307, 10.1093/sysbio/syq010
  • Stamatakis, (2014), Bioinformatics, 30, pp. 1312, 10.1093/bioinformatics/btu033
  • Miller, M.A., Pfeiffer, W., and Schwartz, T. (2010, January 14). Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA.
  • Letunic, (2021), Nucleic Acids Res., 49, pp. W293, 10.1093/nar/gkab301
  • Kumar, (2017), Mol. Biol. Evol., 34, pp. 1812, 10.1093/molbev/msx116
  • Hughes, (2018), Proc. Natl. Acad. Sci. USA, 115, pp. 6249, 10.1073/pnas.1719358115
  • Liu, L., Yu, L., Kalavacharla, V., and Liu, Z. (2011). A Bayesian Model for Gene Family Evolution. BMC Bioinform., 12.
  • Rambaut, (2018), Syst. Biol., 67, pp. 901, 10.1093/sysbio/syy032
  • Abascal, (2010), Nucleic Acids Res., 38, pp. 7, 10.1093/nar/gkq291
  • (1986), Am. Math. Soc. Lect. Math. Life Sci., 17, pp. 57
  • Yang, (2007), Mol. Biol. Evol., 24, pp. 1586, 10.1093/molbev/msm088
  • Zhang, (2005), Mol. Biol. Evol., 22, pp. 2472, 10.1093/molbev/msi237
  • Kapli, (2023), Mol. Biol. Evol., 40, pp. msad041, 10.1093/molbev/msad041
  • Self, (1987), J. Am. Stat. Assoc., 82, pp. 605, 10.1080/01621459.1987.10478472
  • R Development Core Team (2016). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing.
  • Yang, (2005), Mol. Biol. Evol., 22, pp. 1107, 10.1093/molbev/msi097
  • Posada, (2006), Bioinformatics, 22, pp. 3096, 10.1093/bioinformatics/btl474
  • Weaver, (2018), Mol. Biol. Evol., 35, pp. 773, 10.1093/molbev/msx335
  • Mirdita, (2022), Nat. Methods, 19, pp. 679, 10.1038/s41592-022-01488-1
  • Jumper, (2021), Nature, 596, pp. 583, 10.1038/s41586-021-03819-2
  • Pettersen, (2004), J. Comput. Chem., 25, pp. 1605, 10.1002/jcc.20084
  • Ittisoponpisan, (2019), J. Mol. Biol., 431, pp. 2197, 10.1016/j.jmb.2019.04.009
  • Yilmaz, O., Chauvigné, F., Ferré, A., Nilsen, F., Fjelldal, P.G., Cerdà, J., and Finn, R.N. (2020). Unravelling the Complex Duplication History of Deuterostome Glycerol Transporters. Cells, 9.
  • Finn, (2010), J. Exp. Zool. A Ecol. Genet. Physiol., 313A, pp. 623, 10.1002/jez.634
  • Taylor, (2001), Philos. Trans. R Soc. B Biol. Sci., 356, pp. 1661, 10.1098/rstb.2001.0975
  • Xu, (2019), Nat. Commun., 10, pp. 4625, 10.1038/s41467-019-12644-1
  • Turner, B.J. (1984). Evolutionary Genetics of Fishes, Springer US.
  • Vlasova, (2023), Mol. Biol. Evol., 40, pp. msad071, 10.1093/molbev/msad071
  • Posada, (2006), Mol. Biol. Evol., 23, pp. 1891, 10.1093/molbev/msl051
  • Wolf, (2013), BioEssays, 35, pp. 829, 10.1002/bies.201300037
  • Card, (2022), Front. Genet., 13, pp. 979746, 10.3389/fgene.2022.979746
  • Aristide, (2023), Mol. Ecol., 32, pp. 2022, 10.1111/mec.16854
  • Balding, (2008), Handbook of Statistical Genetics: Third Edition, Volume 1, pp. 375
  • Zang, (2019), Int. J. Biol. Macromol., 126, pp. 1093, 10.1016/j.ijbiomac.2019.01.007
  • São Pedro, S.L., Alves, J.M.P., Barreto, A.S., and de Souza Lima, A.O. (2015). Evidence of Positive Selection of Aquaporins Genes from Pontoporia Blainvillei during the Evolutionary Process of Cetaceans. PLoS ONE, 10.
  • Kim, (2014), Comp. Biochem. Physiol. A Mol. Integr. Physiol., 171, pp. 1, 10.1016/j.cbpa.2014.01.012
  • Ma, (2020), Acta Oceanol. Sin., 39, pp. 19
  • Ishibashi, (2021), Biochim. Et. Biophys. Acta BBA Biomembr., 1863, pp. 183617, 10.1016/j.bbamem.2021.183617
  • Yakata, (2011), J. Struct. Biol., 174, pp. 315, 10.1016/j.jsb.2011.01.003
  • Bertolotti, (2013), Antioxid. Redox Signal., 19, pp. 1447, 10.1089/ars.2013.5330
  • Watanabe, (2016), Biochem. Biophys. Res. Commun., 471, pp. 191, 10.1016/j.bbrc.2016.01.153
  • Miller, (2010), Proc. Natl. Acad. Sci. USA, 107, pp. 15681, 10.1073/pnas.1005776107
  • Calusinska, (2010), BioMed Cent. Evol. Biol., 10, pp. 38
  • Chew, (2007), J. Exp. Zool. A Ecol. Genet. Physiol., 307, pp. 357, 10.1002/jez.385
  • Tay, (2003), J. Exp. Biol., 206, pp. 2473, 10.1242/jeb.00464
  • Ip, (2004), Physiol. Biochem. Zool., 77, pp. 390, 10.1086/383510
  • Zapater, (2009), Am. J. Physiol Regul. Integr. Comp. Physiol., 296, pp. 1041, 10.1152/ajpregu.91002.2008
  • Lin, H.-C., and Hastings, P.A. (2013). Phylogeny and Biogeography of a Shallow Water Fish Clade (Teleostei: Blenniiformes). BMC Evol. Biol., 13.
  • Rozemeije, (1993), Comp. Biochem. Physiol. A Physiol., 104, pp. 57, 10.1016/0300-9629(93)90008-R
  • Davenport, (1986), Comp. Biochem. Physiol. A Physiol., 84, pp. 189, 10.1016/0300-9629(86)90062-9
  • Santos, (2004), J. Exp. Biol., 207, pp. 1217, 10.1242/jeb.00867
  • Venkat, (2018), Nat. Ecol. Evol., 2, pp. 1280, 10.1038/s41559-018-0584-5
  • Belinky, (2022), Front. Genet., 13, pp. 991249, 10.3389/fgene.2022.991249
  • Anisimova, (2003), Genetics, 164, pp. 1229, 10.1093/genetics/164.3.1229
  • Gould, (1982), Paleobiology, 8, pp. 4, 10.1017/S0094837300004310
  • Thacker, (2009), Copeia, 2009, pp. 93, 10.1643/CI-08-004
  • Fricke, R., Eschmeyer, W.N., and Van der Laan, R. (2023, April 23). Catalog of Fishes. Available online: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp.
  • Kreida, (2015), Curr. Opin. Struct. Biol., 33, pp. 126, 10.1016/j.sbi.2015.08.004
  • Wright, (2016), Nucleic Acids Res., 44, pp. D733, 10.1093/nar/gkv1189
  • King, (1975), Science, 188, pp. 107, 10.1126/science.1090005