Local model-agnostic explanations for black-box recommender systems using interaction graphs and link prediction techniques

  1. Marta Caro-Martínez 1
  2. Guillermo Jiménez-Díaz 1
  3. Juan A. Recio García 1
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Revista:
IJIMAI

ISSN: 1989-1660

Año de publicación: 2023

Volumen: 8

Número: 2

Páginas: 202-212

Tipo: Artículo

DOI: 10.9781/IJIMAI.2021.12.001 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: IJIMAI

Objetivos de desarrollo sostenible

Resumen

Explanations in recommender systems are a requirement to improve users’ trust and experience. Traditionally, explanations in recommender systems are derived from their internal data regarding ratings, item features, and user profiles. However, this information is not available in black-box recommender systems that lack sufficient data transparency. This current work proposes a local model-agnostic, explanation-by-example method for recommender systems based on knowledge graphs to leverage this knowledge requirement. It only requires information about the interactions between users and items. Through the proper transformation of these knowledge graphs into item-based and user-based structures, link prediction techniques are applied to find similarities between the nodes and to identify explanatory items for the user’s recommendation. Experimental evaluation demonstrates that these knowledge graphs are more effective than classical content-based explanation approaches but have lower information requirements, making them more suitable for black-box recommender systems.

Referencias bibliográficas

  • C. C. Aggarwal, et al., Recommender systems. Springer, 2016.
  • J. Bobadilla, F. Ortega, A. Hernando, A. Gutiérrez, “Recommender systems survey,” Knowledge-based systems, vol. 46, pp. 109–132, 2013.
  • D. Jannach, M. Jugovac, I. Nunes, “Explanations and user control in recommender systems,” in Personalized Human-Computer Interaction, De Gruyter Oldenbourg, 2019, pp. 133–156.
  • N. Tintarev, J. Masthoff, “A survey of explanations in recommender systems,” in 2007 IEEE 23rd international conference on data engineering workshop, 2007, pp. 801– 810, IEEE.
  • R. Sharma, S. Ray, “Explanations in recommender systems: an overview,” International Journal of Business Information Systems, vol. 23, no. 2, pp. 248–262, 2016, doi: 10.1504/IJBIS.2016.078909.
  • M. D. Ekstrand, J. T. Riedl, J. A. Konstan, et al., “Collaborative filtering recommender systems,” Foundations and Trends® in Human–Computer Interaction, vol. 4, no. 2, pp. 81–173, 2011, doi: 10.1561/1100000009.
  • P. Lops, M. De Gemmis, G. Semeraro, “Content-based recommender systems: State of the art and trends,” in Recommender systems handbook, Springer, 2011, pp. 73– 105.
  • R. Sinha, K. Swearingen, “The role of transparency in recommender systems,” in CHI’02 extended abstracts on Human factors in computing systems, 2002, pp. 830–831, ACM.
  • G. Friedrich, M. Zanker, “A taxonomy for generating explanations in recommender systems,” AI Magazine, vol. 32, no. 3, pp. 90–98, 2011.
  • J. L. Herlocker, J. A. Konstan, J. Riedl, “Explaining collaborative filtering recommendations,” in Proceedings of the 2000 ACM conference on Computer supported cooperative work, 2000, pp. 241–250, ACM.
  • S. Ji, S. Pan, E. Cambria, P. Marttinen, S. Y. Philip, “A survey on knowledge graphs: Representation, acquisition, and applications,” IEEE Transactions on Neural Networks and Learning Systems, 2021, doi: 10.1109/ TNNLS.2021.3070843.
  • Q. Guo, F. Zhuang, C. Qin, H. Zhu, X. Xie, H. Xiong, Q. He, “A survey on knowledge graph- based recommender systems,” IEEE Transactions on Knowledge and Data Engineering, 2020, doi: 10.1109/TKDE.2020.3028705.
  • M. T. Ribeiro, S. Singh, C. Guestrin, ““why should i trust you?” explaining the predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 2016, pp. 1135–1144.
  • J. Singh, A. Anand, “Exs: Explainable search using local model agnostic interpretability,” in Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, 2019, pp. 770–773.
  • V. Arya, R. K. Bellamy, P.-Y. Chen, A. Dhurandhar, M. Hind, S. C. Hoffman, S. Houde, Q. V. Liao, R. Luss, A. Mojsilovic, et al., “One explanation does not fit all: A toolkit and taxonomy of ai explainability techniques,” 2019.
  • M. T. Ribeiro, S. Singh, C. Guestrin, “Anchors: High- precision modelagnostic explanations,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, 2018.
  • M. Caro-Martinez, J. A. Recio-Garcia, G. Jimenez-Diaz, “An algorithm independent case-based explanation approach for recommender systems using interaction graphs,” in International Conference on Case-Based Reasoning, 2019, pp. 17–32, Springer.
  • P. Wang, B. Xu, Y. Wu, X. Zhou, “Link prediction in social networks: the state-of-the-art,” Science China Information Sciences, vol. 58, no. 1, pp. 1–38, 2015.
  • D. Liben-Nowell, J. Kleinberg, “The link-prediction problem for social networks,” Journal of the American society for information science and technology, vol. 58, no. 7, pp. 1019–1031, 2007.
  • F. Ricci, L. Rokach, B. Shapira, “Introduction to recommender systems handbook,” in Recommender systems handbook, Springer, 2011, pp. 1–35.
  • F. Isinkaye, Y. Folajimi, B. Ojokoh, “Recommendation systems: Principles, methods and evaluation,” Egyptian Informatics Journal, vol. 16, no. 3, pp. 261–273, 2015, doi: 10.1016/j.eij.2015.06.005.
  • L. Sharma, A. Gera, “A survey of recommendation system: Research challenges,” International Journal of Engineering Trends and Technology (IJETT), vol. 4, no. 5, pp. 1989–1992, 2013.
  • J. B. Schafer, D. Frankowski, J. Herlocker, S. Sen, “Collaborative filtering recommender systems,” in The adaptive web, Springer, 2007, pp. 291–324.
  • J. Bobadilla, A. Hernando, F. Ortega, J. Bernal, “A framework for collaborative filtering recommender systems,” Expert Systems with Applications, vol. 38, no. 12, pp. 14609–14623, 2011, doi: https://doi. org/10.1016/j.eswa.2011.05.021.
  • B. M. Sarwar, G. Karypis, J. A. Konstan, J. Riedl, et al., “Item-based collaborative filtering recommendation algorithms.,” WWW, vol. 1, pp. 285–295, 2001.
  • J. Bobadilla, F. Ortega, A. Hernando, J. Alcalá, “Improving collaborative filtering recommender system results and performance using genetic algorithms,” Knowledge-based systems, vol. 24, no. 8, pp. 1310–1316, 2011.
  • J. L. Herlocker, J. A. Konstan, L. G. Terveen, J. T. Riedl, “Evaluating collaborative filtering recommender systems,” ACM Transactions on Information Systems (TOIS), vol. 22, no. 1, pp. 5–53, 2004.
  • M. De Gemmis, P. Lops, C. Musto, F. Narducci, G. Semeraro, “Semanticsaware content-based recommender systems,” in Recommender Systems Handbook, Springer, 2015, pp. 119–159.
  • M. De Gemmis, P. Lops, G. Semeraro, P. Basile, “Integrating tags in a semantic content-based recommender,” in Proceedings of the 2008 ACM conference on Recommender systems, 2008, pp. 163–170, ACM.
  • C. Musto, G. Semeraro, M. de Gemmis, P. Lops, “Learning word embeddings from wikipedia for content-based recommender systems,” in European Conference on Information Retrieval, 2016, pp. 729–734, Springer.
  • J. Bobadilla, F. Ortega, A. Gutiérrez, S. Alonso, “Classification-based deep neural network architecture for collaborative filtering recommender systems.,” International Journal of Interactive Multimedia & Artificial Intelligence, vol. 6, no. 1, 2020, doi: 10.9781/ijimai.2020.02.006.
  • H. Cordobés de la Calle, L. F. Chiroque, A. Fernández Anta, R. García, P. Morere, L. Ornella, F. Pérez, A. Santos, “Empirical comparison of graphbased recommendation engines for an apps ecosystem,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 3, no. 2, pp. 33–39, 2015.
  • K. W. Darlington, “Designing for explanation in health care applications of expert systems,” Sage Open, vol. 1, no. 1, p. 2158244011408618, 2011.
  • B. Walek, V. Fojtik, “A hybrid recommender system for recommending relevant movies using an expert system,” Expert Systems with Applications, vol. 158, p. 113452, 2020.
  • N. Tintarev, “Explanations of recommendations,” in Proceedings of the 2007 ACM conference on Recommender systems, 2007, pp. 203–206, ACM.
  • Y. Zhang, X. Chen, “Explainable recommendation: A survey and new perspectives,” Foundations and Trends in Information Retrieval, vol. 14, no. 1, pp. 1–101, 2020, doi: 10.1561/1500000066.
  • I. Nunes, D. Jannach, “A systematic review and taxonomy of explanations in decision support and recommender systems,” User Modeling and UserAdapted Interaction, vol. 27, no. 3-5, pp. 393–444, 2017, doi: 10.1007/ s11257-017-9195-0.
  • M. Caro-Martinez, G. Jimenez-Diaz, J. A. Recio-Garcia, “A theoretical model of explanations in recommender systems,” ICCBR 2018, p. 52, 2018. International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº2 - 212 -
  • A. Papadimitriou, P. Symeonidis, Y. Manolopoulos, “A generalized taxonomy of explanations styles for traditional and social recommender systems,” Data Mining and Knowledge Discovery, vol. 24, no. 3, pp. 555– 583, 2012, doi: 10.1007/s10618-011-0215-0.
  • F. Gedikli, D. Jannach, M. Ge, “How should I explain? a comparison of different explanation types for recommender systems,” International Journal of Human-Computer Studies, vol. 72, no. 4, pp. 367–382, 2014.
  • P. Kouki, J. Schaffer, J. Pujara, J. O’Donovan, L. Getoor, “Personalized explanations for hybrid recommender systems,” in Proceedings of the 24th International Conference on Intelligent User Interfaces, 2019, pp. 379– 390, ACM.
  • L. Quijano-Sanchez, C. Sauer, J. A. Recio-Garcia, B. Diaz-Agudo, “Make it personal: a social explanation system applied to group recommendations,” Expert Systems with Applications, vol. 76, pp. 36–48, 2017.
  • I. Andjelkovic, D. Parra, J. O’Donovan, “Moodplay: Interactive music recommendation based on artists’ mood similarity,” International Journal of Human- Computer Studies, vol. 121, pp. 142–159, 2019.
  • X. Wang, X. He, F. Feng, L. Nie, T.-S. Chua, “Tem: Tree-enhanced embedding model for explainable recommendation,” in Proceedings of the 2018 World Wide Web Conference, WWW ’18, Republic and Canton of Geneva, Switzerland, 2018, pp. 1543–1552, International World Wide Web Conferences Steering Committee.
  • J. Jorro-Aragoneses, M. Caro-Martinez, J. A. Recio-Garcia, B. DiazAgudo, G. Jimenez-Diaz, “Personalized case-based explanation of matrix factorization recommendations,” in International Conference on CaseBased Reasoning, 2019, pp. 140–154, Springer.
  • F. Sørmo, J. Cassens, A. Aamodt, “Explanation in case- based reasoning– perspectives and goals,” Artificial Intelligence Review, vol. 24, no. 2, pp. 109–143, 2005, doi: 10.1007/s10462-005-4607-7.
  • J. Bennett, S. Lanning, et al., “The netflix prize,” in Proceedings of KDD cup and workshop, vol. 2007, 2007, p. 35, New York, NY, USA.
  • M. Nickel, K. Murphy, V. Tresp, E. Gabrilovich, “A review of relational machine learning for knowledge graphs,” Proceedings of the IEEE, vol. 104, no. 1, pp. 11– 33, 2015, doi: 10.1109/JPROC.2015.2483592.
  • L. Qiao, L. Zhang, S. Chen, D. Shen, “Data-driven graph construction and graph learning: A review,” Neurocomputing, vol. 312, pp. 336–351, 2018.
  • Q. Wang, Z. Mao, B. Wang, L. Guo, “Knowledge graph embedding: A survey of approaches and applications,” IEEE Transactions on Knowledge and Data Engineering, vol. 29, no. 12, pp. 2724–2743, 2017.
  • H. Paulheim, “Knowledge graph refinement: A survey of approaches and evaluation methods,” Semantic web, vol. 8, no. 3, pp. 489–508, 2017.
  • Y. Lin, X. Han, R. Xie, Z. Liu, M. Sun, “Knowledge representation learning: A quantitative review,” 2018, https://arxiv.org/abs/1812.10901.
  • Y. Chong, Y. Ding, Q. Yan, S. Pan, “Graph-based semi- supervised learning: A review,” Neurocomputing, 2020.
  • B. Furht, Handbook of social network technologies and applications. Springer Science & Business Media, 2010.
  • L. Lü, T. Zhou, “Link prediction in complex networks: A survey,” Physica A: statistical mechanics and its applications, vol. 390, no. 6, pp. 1150–1170, 2011, doi: 10.1016/j.physa.2010.11.027.
  • N. N. Daud, S. H. Ab Hamid, M. Saadoon, F. Sahran, N. B. Anuar, “Applications of link prediction in social networks: A review,” Journal of Network and Computer Applications, p. 102716, 2020.
  • N. Chiluka, N. Andrade, J. Pouwelse, “A link prediction approach to recommendations in large-scale user- generated content systems,” in European Conference on Information Retrieval, 2011, pp. 189–200, Springer.
  • Z. Huang, W. Chung, T.-H. Ong, H. Chen, “A graph- based recommender system for digital library,” in Proceedings of the 2nd ACM/IEEE-CS joint conference on Digital libraries, 2002, pp. 65–73, ACM.
  • H. Chen, X. Li, Z. Huang, “Link prediction approach to collaborative filtering,” in Digital Libraries, 2005. JCDL’05. Proceedings of the 5th ACM/ IEEE-CS Joint Conference on, 2005, pp. 141–142, IEEE.
  • H. Wang, F. Zhang, X. Xie, M. Guo, “Dkn: Deep knowledge-aware network for news recommendation,” in Proceedings of the 2018 world wide web conference, 2018, pp. 1835–1844.
  • A. Shahmohammadi, E. Khadangi, A. Bagheri, “Presenting new collaborative link prediction methods for activity recommendation in facebook,” Neurocomputing, vol. 210, pp. 217–226, 2016.
  • T. Zhou, J. Ren, M. Medo, Y.-C. Zhang, “Bipartite network projection and personal recommendation,” Physical Review E, vol. 76, no. 4, p. 046115, 2007, doi: 10.1103/PhysRevE.76.046115.
  • I. Tiddi, et al., “Foundations of explainable knowledge- enabled systems,” Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges, vol. 47, p. 23, 2020.
  • F. Lecue, “On the role of knowledge graphs in explainable ai,” Semantic Web, no. Preprint, pp. 1–11, 2019.
  • N. Barbieri, F. Bonchi, G. Manco, “Who to follow and why: link prediction with explanations,” in 20th ACM SIGKDD International Conference on Knowledge discovery and data mining, 2014, pp. 1266–1275, ACM.
  • Y. Xian, Z. Fu, S. Muthukrishnan, G. De Melo, Y. Zhang, “Reinforcement knowledge graph reasoning for explainable recommendation,” in Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019, pp. 285–294.
  • X. Wang, D. Wang, C. Xu, X. He, Y. Cao, T.-S. Chua, “Explainable reasoning over knowledge graphs for recommendation,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 5329–5336.
  • M. Caro-Martinez, G. Jimenez-Diaz, “Similar users or similar items? comparing similarity-based approaches for recommender systems in online judges,” in International Conference on Case-Based Reasoning, 2017, pp. 92–107, Springer.
  • G. Jimenez-Diaz, P. P. Gómez-Martín, M. A. Gómez- Martín, A. A. Sánchez-Ruiz, “Similarity metrics from social network analysis for content recommender systems,” AI Communications, vol. 30, no. 3-4, pp. 223– 234, 2017.
  • G. Jimenez-Diaz, P. P. G. Martín, M. A. G. Martín, A. A. Sánchez-Ruiz, “Similarity metrics from social network analysis for content recommender systems,” in International Conference on Case-Based Reasoning, 2016, pp. 203–217, Springer.
  • S. Dooms, A. Bellogín, T. D. Pessemier, L. Martens, “A framework for dataset benchmarking and its application to a new movie rating dataset,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 7, no. 3, p. 41, 2016