Calcium-Alginate-Chitosan Nanoparticle as a Potential Solution for Pesticide Removal, a Computational Approach

  1. Yáñez, Osvaldo 4
  2. Alegría-Arcos, Melissa 4
  3. Suardiaz, Reynier 3
  4. Morales-Quintana, Luis 6
  5. Castro, Ricardo I. 7
  6. Palma-Olate, Jonathan 8
  7. Galarza, Christian 10
  8. Catagua-González, Ángel 10
  9. Rojas-Pérez, Víctor 5
  10. Urra, Gabriela 1
  11. Hernández-Rodríguez, Erix W. 12
  12. Bustos, Daniel 19
  1. 1 Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile
  2. 2 Unidad de Bioinformática Clínica, Centro Oncológico, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile
  3. 3 Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
  4. 4 Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago 7500000, Chile
  5. 5 Doctorado en Biotecnología Traslacional, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3480094, Chile
  6. 6 Multidisciplinary Agroindustry Research Laboratory, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3400000, Chile
  7. 7 Multidisciplinary Agroindustry Research Laboratory, Carrera de Ingeniería en Construcción, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Talca 3400000, Chile
  8. 8 Facultad de Ingeniería, Universidad de Talca, Curicó 3340000, Maule, Chile
  9. 9 Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado Universidad Católica del Maule, Talca 3460000, Chile
  10. 10 Escuela Superior Politécnica del Litoral, Guayaquil EC090903, Ecuador
Revista:
Polymers

ISSN: 2073-4360

Año de publicación: 2023

Volumen: 15

Número: 14

Páginas: 3020

Tipo: Artículo

DOI: 10.3390/POLYM15143020 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Polymers

Resumen

Pesticides have a significant negative impact on the environment, non-target organisms,and human health. To address these issues, sustainable pest management practices and governmentregulations are necessary. However, biotechnology can provide additional solutions, such as the useof polyelectrolyte complexes to encapsulate and remove pesticides from water sources. We introducea computational methodology to evaluate the capture capabilities of Calcium-Alginate-Chitosan(CAC) nanoparticles for a broad range of pesticides. By employing ensemble-docking and moleculardynamics simulations, we investigate the intermolecular interactions and absorption/adsorptioncharacteristics between the CAC nanoparticles and selected pesticides. Our findings reveal thatcharged pesticide molecules exhibit more than double capture rates compared to neutral counterparts,owing to their stronger affinity for the CAC nanoparticles. Non-covalent interactions, such as vander Waals forces, π-π stacking, and hydrogen bonds, are identified as key factors which stabilized thecapture and physisorption of pesticides. Density profile analysis confirms the localization of pesticides adsorbed onto the surface or absorbed into the polymer matrix, depending on their chemicalnature. The mobility and diffusion behavior of captured compounds within the nanoparticle matrix isassessed using mean square displacement and diffusion coefficients. Compounds with high capturelevels exhibit limited mobility, indicative of effective absorption and adsorption. Intermolecularinteraction analysis highlights the significance of hydrogen bonds and electrostatic interactions in thepesticide-polymer association. Notably, two promising candidates, an antibiotic derived from tetracycline and a rodenticide, demonstrate a strong affinity for CAC nanoparticles. This computationalmethodology offers a reliable and efficient screening approach for identifying effective pesticidecapture agents, contributing to the development of eco-friendly strategies for pesticide removal.

Información de financiación

Financiadores

  • ANID FONDECYT INITIATION
    • 11220444

Referencias bibliográficas

  • Rani, (2021), J. Clean. Prod., 283, pp. 124657, 10.1016/j.jclepro.2020.124657
  • Kim, (2017), Sci. Total Environ., 575, pp. 525, 10.1016/j.scitotenv.2016.09.009
  • Alengebawy, A., Abdelkhalek, S.T., Qureshi, S.R., and Wang, M.-Q. (2021). Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics, 9.
  • Sarwar, (2015), Int. J. Bioinform. Biomed. Eng., 1, pp. 130
  • Sánchez-Bayo, F. (2021). Indirect effect of pesticides on insects and other arthropods. Toxics, 9.
  • Walker, (2003), Ecotoxicology, 12, pp. 307, 10.1023/A:1022523331343
  • Fry, (1995), Environ. Health Perspect., 103, pp. 165
  • Paoli, (2015), J. Endocrinol. Investig., 38, pp. 745, 10.1007/s40618-015-0251-5
  • Carvalho, (2017), Food Energy Secur., 6, pp. 48, 10.1002/fes3.108
  • Lantin, (2010), Cancer Causes Control., 21, pp. 787, 10.1007/s10552-010-9516-7
  • Mostafalou, (2013), Toxicol. Appl. Pharmacol., 268, pp. 157, 10.1016/j.taap.2013.01.025
  • Richardson, (2019), Acta Neuropathol., 138, pp. 343, 10.1007/s00401-019-02033-9
  • (2021), Environ. Sci. Pollut. Res., 28, pp. 44726, 10.1007/s11356-021-14999-9
  • Boedeker, W., Watts, M., Clausing, P., and Marquez, E. (2020). The global distribution of acute unintentional pesticide poisoning: Estimations based on a systematic review. BMC Public Health, 20.
  • Zohry, A.E.-H., and Ouda, S. (2018). Crop Rotation Defeats Pests and Weeds, Springer. No. Hald 1999.
  • Ndakidemi, B.J., Mbega, E.R., Ndakidemi, P.A., Stevenson, P.C., Belmain, S.R., Arnold, S.E.J., and Woolley, V.C. (2021). Natural pest regulation and its compatibility with other crop protection practices in smallholder bean farming systems. Biology, 10.
  • Kumari, (2022), Front. Genet., 13, pp. 914029, 10.3389/fgene.2022.914029
  • Andrunik, M., and Bajda, T. (2021). Removal of pesticides from waters by adsorption: Comparison between synthetic zeolites and mesoporous silica materials. A review. Materials, 14.
  • Almakhathi, (2022), Front. Mater., 9, pp. 786581, 10.3389/fmats.2022.786581
  • Maddela, (2023), Environ. Res., 217, pp. 114776, 10.1016/j.envres.2022.114776
  • Kyriakopoulos, (2006), Sep. Purif. Rev., 35, pp. 97, 10.1080/15422110600822733
  • Bustos, (2022), Int. J. Environ. Sci. Technol., 19, pp. 7791, 10.1007/s13762-021-03685-5
  • Escudero, (2019), Environ. Chem. Lett., 17, pp. 409, 10.1007/s10311-018-0816-6
  • Berger, (2004), Eur. J. Pharm. Biopharm., 57, pp. 19, 10.1016/S0939-6411(03)00161-9
  • Bartkowiak, (1999), Chem. Mater., 11, pp. 2486, 10.1021/cm9910456
  • Kulig, D., Zimoch-Korzycka, A., Jarmoluk, A., and Marycz, K. (2016). Study on alginate-chitosan complex formed with different polymers ratio. Polymers, 8.
  • Jiménez-Gómez, C.P., and Cecilia, J.A. (2020). Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules, 25.
  • Taghizadeh, (2009), Carbohydr. Polym., 78, pp. 773, 10.1016/j.carbpol.2009.06.020
  • Rodrigues, (2012), J. Funct. Biomater., 3, pp. 615, 10.3390/jfb3030615
  • Zheng, (2003), Carbohydr. Polym., 54, pp. 527, 10.1016/j.carbpol.2003.07.009
  • Xia, (2011), Food Hydrocoll., 25, pp. 170, 10.1016/j.foodhyd.2010.03.003
  • Silva, (2021), Carbohydr. Polym., 272, pp. 118472, 10.1016/j.carbpol.2021.118472
  • Sirajudheen, (2021), Carbohydr. Polym., 273, pp. 118604, 10.1016/j.carbpol.2021.118604
  • Khor, (2003), Biomaterials, 24, pp. 2339, 10.1016/S0142-9612(03)00026-7
  • Castro, R.I., Morales-Quintana, L., Alvarado, N., Guzmán, L., Forero-Doria, O., Valenzuela-Riffo, F., and Laurie, V.F. (2021). Design and optimization of a self-assembling complex based on microencapsulated calcium alginate and glutathione (Cag) using response surface methodology. Polymers, 13.
  • Makarova, A.O., Derkach, S.R., Khair, T., Kazantseva, M.A., Zuev, Y.F., and Zueva, O.S. (2023). Ion-Induced Polysaccharide Gelation: Peculiarities of Alginate Egg-Box Association with Different Divalent Cations. Polymers, 15.
  • Hu, (2021), Int. J. Biol. Macromol., 177, pp. 578, 10.1016/j.ijbiomac.2021.02.086
  • Hu, (2022), Carbohydr. Polym., 294, pp. 119788, 10.1016/j.carbpol.2022.119788
  • Hecht, (2016), Biomacromolecules, 17, pp. 2160, 10.1021/acs.biomac.6b00378
  • Bustos, (2022), Biomed. Res. Int., 2022, pp. 5576090, 10.1155/2022/5576090
  • Marwah, H., Khare, S., Rawat, P., Singh, S., Kesharwani, P., Alam, M.S., Hamid, H., and Arora, S. (2022). Strengths, limitations, and regulatory aspects of hybrid drug delivery systems. Hybrid Nanomater. Drug Deliv., 339–355.
  • Ahmad, (2014), Biochem. Eng. J., 84, pp. 83, 10.1016/j.bej.2014.01.004
  • Zang, (2017), Ecol. Eng., 99, pp. 358, 10.1016/j.ecoleng.2016.11.070
  • Boddu, (2008), Water Res., 42, pp. 633, 10.1016/j.watres.2007.08.014
  • Cadaval, (2015), Desalination Water Treat., 57, pp. 16583, 10.1080/19443994.2015.1079741
  • Liu, (2022), Polym. Bull., 79, pp. 2633, 10.1007/s00289-021-03626-9
  • Vieira, (2014), J. Ind. Eng. Chem., 20, pp. 3387, 10.1016/j.jiec.2013.12.024
  • Alsamman, (2021), Arab. J. Chem., 14, pp. 103455, 10.1016/j.arabjc.2021.103455
  • Semeraro, (2017), Int. J. Environ. Agric. Biotechnol. (IJEAB), 2, pp. 238860
  • Zhao, (2021), J. Hazard. Mater., 403, pp. 124054, 10.1016/j.jhazmat.2020.124054
  • Valdés, C., Valdés, O., Bustos, D., Abril, D., Cabrera-Barjas, G., Pereira, A., Villaseñor, J., Polo-Cuadrado, E., Carreño, G., and Durán-Lara, E.F. (2021). Use of poly(Vinyl alcohol)-malic acid (CLHPMA) hydrogels and chitosan coated calcium alginate (CCCA) microparticles as potential sorbent phases for the extraction and quantitative determination of pesticides from aqueous solutions. Polymers, 13.
  • Lu, (2011), Carbohydr. Polym., 83, pp. 1984, 10.1016/j.carbpol.2010.11.003
  • Etcheverry, (2017), J. Environ. Chem. Eng., 5, pp. 5868, 10.1016/j.jece.2017.11.018
  • Daoudi, (2014), Opt. Mater., 36, pp. 1471, 10.1016/j.optmat.2014.03.040
  • Gallardo, (2020), J. Environ. Chem. Eng., 8, pp. 104355, 10.1016/j.jece.2020.104355
  • Nadavala, (2009), J. Hazard. Mater., 162, pp. 482, 10.1016/j.jhazmat.2008.05.070
  • Kim, (2023), Nucleic Acids Res., 51, pp. D1373, 10.1093/nar/gkac956
  • Wang, (2020), J. Chem. Inf. Model., 60, pp. 2044, 10.1021/acs.jcim.0c00025
  • Banck, (2011), J. Cheminformatics, 3, pp. 33, 10.1186/1758-2946-3-33
  • Shelley, (2007), J. Comput. Aided Mol. Des., 21, pp. 681, 10.1007/s10822-007-9133-z
  • Harder, (2016), J. Chem. Theory Comput., 12, pp. 281, 10.1021/acs.jctc.5b00864
  • Li, (2011), Proteins, 79, pp. 2794, 10.1002/prot.23106
  • Maestro, S. (2020). Schrödinger Release 2021-1, LLC.
  • Andrade, (2009), J. Comput. Chem., 30, pp. 2157, 10.1002/jcc.21224
  • Grant, (2021), Protein Sci., 30, pp. 20, 10.1002/pro.3923
  • Ding, (2023), J. Chem. Inf. Model., 63, pp. 1982, 10.1021/acs.jcim.2c01504
  • Bajusz, D., Rácz, A., and Héberger, K. (2019). Comparison of data fusion methods as consensus scores for ensemble docking. Molecules, 24.
  • Boto, (2020), J. Chem. Theory Comput., 16, pp. 4150, 10.1021/acs.jctc.0c00063
  • Giorgino, (2014), Comput. Phys. Commun., 185, pp. 317, 10.1016/j.cpc.2013.08.022
  • Giorgino, (2019), J. Open Source Softw., 4, pp. 1698, 10.21105/joss.01698
  • Humphrey, (1996), J. Mol. Graph., 14, pp. 33, 10.1016/0263-7855(96)00018-5
  • Espana, (2016), Drug Metab. Dispos., 44, pp. 1872, 10.1124/dmd.116.071688
  • Khalil, (2021), Environ. Toxicol. Pharmacol., 81, pp. 103536, 10.1016/j.etap.2020.103536
  • Zhang, (2022), Chemosphere, 291, pp. 132752, 10.1016/j.chemosphere.2021.132752
  • Zhou, (2022), Sci. Total Environ., 836, pp. 155632, 10.1016/j.scitotenv.2022.155632
  • Ma, (2021), Ecotoxicol. Environ. Saf., 213, pp. 112061, 10.1016/j.ecoenv.2021.112061
  • Zhang, (2020), Chemosphere, 249, pp. 126479, 10.1016/j.chemosphere.2020.126479
  • Zhang, (2022), Bioresour. Technol., 350, pp. 126884, 10.1016/j.biortech.2022.126884
  • Li, (2022), Bioresour. Technol., 361, pp. 127646, 10.1016/j.biortech.2022.127646
  • Rached, (2022), Arch. Toxicol., 96, pp. 535, 10.1007/s00204-021-03210-0
  • Erdem, (2021), Environ. Nanotechnol. Monit. Manag., 16, pp. 100576
  • Zhang, (2023), Mater Today Commun., 34, pp. 105214, 10.1016/j.mtcomm.2022.105214