Nanospeciation Analysis Using Field Flow Fractionation
- Moreno-Martin, Gustavo 1
- Sanz-Landaluze, Jon 1
- Madrid, Yolanda 1
- 1 Universidad Complutense de Madrid; Madrid Spain
Año de publicación: 2017
Páginas: 1-24
Tipo: Artículo
Resumen
Trace element speciation is currently moving toward nanotechnology field. Nanosized materials such as metallic nanoparticles (MNPs) and metallic oxide nanoparticles (MONPs) are being used in many fields. However, their impact on the environment and human health is still poorly understood. Characterizing metal and metalloids in nanosize form is not an easy task, and it is still at an incipient stage of development. There is a current trend of using multimethod approaches to provide information, especially for nano-objects in complex matrices. Field flow fractionation (FFF) techniques, especially asymmetrical flow-field flow fractionation (AF4), have been shown as a promising approach for size-based elemental speciation. This article provides a detailed description of the application of AF4 to trace element speciation in nanosize form. The description will focus first on the difficulties encountered in MNPs and MONPs determination, especially those factors affecting their stability (sample treatment and interaction with living systems). The second part outlines the application of the AF4 in nanospeciation consisting of a description on the basic principles of the technique and the parameters affecting MNPs and MONPs separation along with different methodologies for their sizing and quantification. The article presents throughout selected examples on the application of AF4 for characterizing nanoparticles.
Referencias bibliográficas
- Liu, (2010), Environ. Sci. Technol., 44, pp. 2169, 10.1021/es9035557
- European Commission 2011 Commission Recommendation of 18 October 2011 on the Definition of Nanomaterial
- Linsinger, (2013), Food Chem., 138, pp. 1959, 10.1016/j.foodchem.2012.11.074
- Wu, (2011), Adv. Drug Deliv. Rev., 63, pp. 456, 10.1016/j.addr.2011.02.001
- Cho, (2013), Mol. Pharm., 10, pp. 2093, 10.1021/mp300697h
- Fraunhofer, (2004), Anal. Chem., 76, pp. 1909, 10.1021/ac0353031
- Wyatt, (1998), J. Colloid Interface Sci., 197, pp. 9, 10.1006/jcis.1997.5215
- Filipe, (2010), Pharm. Res., 27, pp. 796, 10.1007/s11095-010-0073-2
- Dudkiewicz, (2011), TrAC Trends Anal. Chem., 30, pp. 28, 10.1016/j.trac.2010.10.007
- Calzolai, (2012), Food Addit. Contam., 29, pp. 1183, 10.1080/19440049.2012.689777
- McCarthy, (1993), Characterisation of Environmental Particles, 2, pp. 247
- Kowalczyk, (2011), Curr. Opin. Colloid Interface Sci., 16, pp. 135, 10.1016/j.cocis.2011.01.004
- Wagner, (2015), J. Anal. At. Spectrom, 30, pp. 1286, 10.1039/C4JA00471J
- Deering, (2008), Part. Fibre Toxicol., 5, pp. 18, 10.1186/1743-8977-5-18
- Nischwitz, (2012), J. Anal. At. Spectrom, 27, pp. 1080, 10.1039/c2ja10387g
- López-Heras, (2014), Talanta, 124, pp. 71, 10.1016/j.talanta.2014.02.029
- Loeschner, (2013), Anal. Bioanal. Chem., 405, pp. 8185, 10.1007/s00216-013-7228-z
- Schmidt, (2011), Anal. Chem., 83, pp. 2461, 10.1021/ac102545e
- Grombe, (2014), Anal. Bioanal. Chem., 406, pp. 3895
- Grombe, (2015), Accred. Qual. Assur., 20, pp. 3, 10.1007/s00769-014-1100-5
- Böhmert, (2013), Nanotoxicology, 10.3109/17435390.2013.815284
- Peters, (2012), ACS Nano, 6, pp. 2441, 10.1021/nn204728k
- López-Moreno, (2010), Environ. Sci. Technol., 44, pp. 7315, 10.1021/es903891g
- Stampoulis, (2009), Environ. Sci. Technol., 43, pp. 9473, 10.1021/es901695c
- Yin, (2011), Environ. Sci. Technol., 45, pp. 2360, 10.1021/es103995x
- Zhang, (2012), ACS Nano, 6, pp. 9943, 10.1021/nn303543n
- Giddings, (1966), Sep. Sci., 1, pp. 123
- Giddings, (1976), Anal. Chem., 48, pp. 1126, 10.1021/ac50002a016
- Wahlun, (1987), Anal. Chem., 59, pp. 1332, 10.1021/ac00136a016
- Baalousha, (2011), J. Chromatogr. A, 1218, pp. 4078, 10.1016/j.chroma.2011.04.063
- Yohannes, (2011), J. Chromatogr. A, 1218, pp. 4104, 10.1016/j.chroma.2010.12.110
- Kammer, (2011), TrAC Trends Anal. Chem., 30, pp. 425, 10.1016/j.trac.2010.11.012
- Tiede, (2008), Food Addit. Contam., 25, pp. 7795, 10.1080/02652030802007553
- Susanto, (2009), J. Membr. Sci., 327, pp. 125, 10.1016/j.memsci.2008.11.025
- Kavurt, (2015), J. Chem. Technol. Biotechnol., 90, pp. 11, 10.1002/jctb.4473
- Hagendorfer, (2011), Anal. Chim. Acta, 707, pp. 367, 10.1016/j.aca.2011.08.014
- Ulrich, (2012), J. Anal. At. Spectrom., 27, pp. 1120, 10.1039/c2ja30024a
- Loeschner, (2013), J. Chromatogr. A, 1272, pp. 116, 10.1016/j.chroma.2012.11.053
- Hagendorfer, (2012), Anal. Chem., 84, pp. 22678, 10.1021/ac202641d
- Sötebier, (2015), J. Anal. At. Spectrom, 30, pp. 2214, 10.1039/C5JA00297D
- Mudalige, (2015), Anal. Chem., 87, pp. 1764, 10.1021/ac503683n
- Boschetti-de-Fierro, (2015), Sci. Rep., 5, pp. 18448, 10.1038/srep18448
- Meisterjahn, (2016), J. Chromatogr. A, 1440, pp. 150, 10.1016/j.chroma.2016.02.059
- Saenmuangchin, (2015), J. Chromatogr. A, 1415, pp. 115, 10.1016/j.chroma.2015.08.047
- Sánchez-García, (2016), J. Chromatogr. A, 1438, pp. 205, 10.1016/j.chroma.2016.02.036
- Schimpf, (2000), Field-Flow Fractionation Handbook, pp. 71
- Dou, (2015), J. Chromatogr. A, 1393, pp. 115, 10.1016/j.chroma.2015.03.025
- Israelachvili, (2011), Intermolecular and Surface Forces, pp. 291
- Gigault, (2014), Anal. Chim. Acta, 809, pp. 9, 10.1016/j.aca.2013.11.021
- Baalousha, (2006), J. Chromatogr. A, 1104, pp. 272, 10.1016/j.chroma.2005.11.095
- Pan, (2007), Small, 3, pp. 1941, 10.1002/smll.200700378
- Gigault, (2013), Anal. Bioanal. Chem., 405, pp. 6251, 10.1007/s00216-013-7055-2
- Heroult, (2014), Anal. Bioanal. Chem., 406, pp. 3919, 10.1007/s00216-014-7831-7
- Barahona, (2015), Anal. Chem., 87, pp. 3039, 10.1021/ac504698j
- Bartczak, (2015), Anal. Chem., 87, pp. 5482, 10.1021/acs.analchem.5b01052
- Wagner, (2014), Anal. Chem., 86, pp. 5201, 10.1021/ac501664t
- Tran, (2013), Adv. Nat. Sci. Nanosci. Nanotechnol., 4, pp. 33001, 10.1088/2043-6262/4/3/033001
- Ramos, (2014), J. Chromatogr. A, 1371, pp. 227, 10.1016/j.chroma.2014.10.060
- Artiaga, (2015), Food Chem., 166, pp. 76, 10.1016/j.foodchem.2014.05.139
- Bolea, (2014), Analyst, 139, pp. 914, 10.1039/C3AN01443F
- Lan, (2013), Nano Energy, 2, pp. 1031, 10.1016/j.nanoen.2013.04.002
- Helsper, (2016), Anal. Bioanal. Chem., 408, pp. 6679, 10.1007/s00216-016-9783-6
- Knopp, (2009), Anal. Chim. Acta, 647, pp. 14, 10.1016/j.aca.2009.05.037
- Argyo, (2014), Chem. Mater., 26, pp. 435, 10.1021/cm402592t
- Kolodziejczak-Radzimska, (2014), Materials (Basel), 7, pp. 2833, 10.3390/ma7042833
- Gajjar, (2009), J. Biol. Eng., 3, pp. 1, 10.1186/1754-1611-3-9
- He, (2015), J. Rare Earth., 33, pp. 791, 10.1016/S1002-0721(14)60486-5
- Xu, (2014), NPG Asia Mater., 6, pp. e90, 10.1038/am.2013.88
- Rayman, (2008), Br. J. Nutr., 100, pp. 254, 10.1017/S0007114508939830
- Dobias, (2011), Nanotechnology, 22, pp. 195605, 10.1088/0957-4484/22/19/195605
- Zhang, (2008), Toxicol. Sci., 101, pp. 22, 10.1093/toxsci/kfm221
- Wang, (2007), Free Radic. Biol. Med., 42, pp. 1524, 10.1016/j.freeradbiomed.2007.02.013
- Vera, (2016), Anal. Bioanal. Chem., 408, pp. 6659, 10.1007/s00216-016-9780-9
- Pornwilard, (2014), Food Res. Int., 57, pp. 208
- Palomo-Siguero, (2015), J. Anal. At. Spectrom, 30, pp. 1237, 10.1039/C4JA00407H