The Glyoxylate Cycle Is Involved in White-Opaque Switching in Candida albicans

  1. Hidalgo Vico, Susana 1
  2. Prieto Prieto, Antonio Daniel 1
  3. Alonso Monge, Rebeca María Mar 1
  4. Román González, Elvira 1
  5. Pla Alonso, Jesús 1
  1. 1 Departamento de Microbiología y Parasitología, Universidad Complutense de Madrid, Madrid, Spain
Revista:
Journal of Fungi

ISSN: 2309-608X

Año de publicación: 2021

Volumen: 7

Número: 7

Páginas: 1-14

Tipo: Artículo

DOI: 10.3390/JOF7070502 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of Fungi

Resumen

Candida albicans is a commensal yeast that inhabits the gastrointestinal tract of humans. The master regulator of the white-opaque transition WOR1 has been implicated in the adaptation to this commensal status. A proteomic analysis of cells overexpressing this transcription factor (WOR1OE) suggested an altered metabolism of carbon sources and a phenotypic analysis confirmed this alteration. The WOR1OE cells are deficient in using trehalose and xylose and are unable to use 2C sources, which is consistent with a reduction in the amount of Icl1, the isocitrate lyase enzyme. The icl1Δ/Δ mutants overexpressing WOR1 are deficient in the production of phloxine B positive cells, a main characteristic of opaque cells, a phenotype also observed in mating type hemizygous mtla1Δ icl1Δ/Δ cells, suggesting the involvement of Icl1 in the adaptation to the commensal state. In fact, icl1Δ/Δ cells have reduced fitness in mouse gastrointestinal tract as compared with essentially isogenic heterozygous ICL1/icl1Δ, but overproduction of WOR1 in an icl1Δ/Δ mutant does not restore fitness. These results implicate the glyoxylate shunt in the adaptation to commensalism of C. albicans by mechanisms that are partially independent of WOR1.Keywords: commensalism; glyoxylate cycle; wo switching; fungal pathogenesis; epigenetics; opaque cells; oxidative stress

Información de financiación

Financiadores

Referencias bibliográficas

  • 10.1086/378745
  • 10.1038/nrdp.2018.26
  • 10.1126/scitranslmed.3004404
  • 10.4161/viru.22913
  • 10.1128/EC.00196-13
  • 10.1016/j.diagmicrobio.2006.03.013
  • 10.1016/j.jhin.2009.02.009
  • 10.1128/jcm.32.4.975-980.1994
  • 10.1128/JCM.37.9.2817-2828.1999
  • 10.2217/fmb.16.1
  • 10.1016/j.chom.2019.02.008
  • 10.1093/femsyr/fov081
  • 10.1016/j.mib.2013.09.006
  • 10.1371/journal.pbio.1001510
  • 10.1128/mBio.00117-12
  • 10.1111/cmi.12388
  • Prieto, (2014), PLoS ONE, 9, 10.1371/journal.pone.0087128
  • 10.1111/mmi.13674
  • 10.2217/fmb-2018-0012
  • 10.3402/jom.v6.22993
  • 10.1371/journal.pgen.1001070
  • 10.1073/pnas.232566499
  • 10.1016/S0092-8674(03)00885-7
  • 10.1128/IAI.67.12.6652-6662.1999
  • 10.1128/iai.65.11.4468-4475.1997
  • 10.1128/EC.00252-06
  • 10.1038/ng.2710
  • 10.1073/pnas.0605270103
  • 10.1073/pnas.0605138103
  • 10.1371/journal.pbio.0050256
  • 10.1111/mmi.12329
  • 10.1534/genetics.116.190645
  • 10.1111/j.1365-2958.2011.07754.x
  • 10.1128/JB.183.15.4614-4625.2001
  • 10.1111/j.1365-2958.2009.06772.x
  • 10.1093/emboj/16.8.1982
  • 10.1128/IAI.67.9.4655-4660.1999
  • 10.3389/fcimb.2017.00389
  • 10.1093/genetics/134.3.717
  • 10.1080/21505594.2016.1163458
  • 10.1038/35083594
  • 10.1128/EC.00372-06
  • 10.1038/s41564-017-0043-0
  • 10.1128/mSphere.00130-16
  • 10.1128/mSphere.00001-19
  • 10.1126/sciadv.1500248
  • 10.1074/jbc.275.2.1511
  • 10.1016/j.ijpara.2020.02.003
  • 10.1128/EC.4.8.1328-1342.2005
  • 10.1128/mBio.01269-16
  • 10.1099/mic.0.2008/020289-0
  • 10.1128/mSphere.00020-15
  • 10.3389/fmicb.2015.00792
  • 10.1016/j.biocel.2018.09.019