Alzheimer’s disease: a continuum with visual involvements
- Elvira Hurtado, Lorena 1
- López Cuenca, Inés 12
- Hoz Montañana, Rosa, de 12
- Salas Carrillo, Mario 4
- Sánchez-Puebla Fernández, Lidia 1
- Ramírez Toraño, Federico
- Matamoros Felipe, José Antonio 1
- Fernández Albarral, José A. 12
- Rojas, Pilar 1
- Alfonsín Romero, Soraya
- Delgado Losada, María Luisa 2
- Ramírez Sebastián, Ana Isabel 123
- Salazar Corral, Juan José 123
- Maestú Unturbe, Fernando 2
- Gil Gregorio, Pedro 4
- Ramírez Sebastián, José María 12
- García, Elena Salobrar 23
- 1 Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
- 2 Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- 3 Faculty of Optics and Optometry, Department of Immunology, Ophthalmology and ENT, University of Madrid, Madrid, Spain
- 4 Memory Unit, Geriatrics Service, Hospital Clínico San Carlos, Madrid, Spain
ISSN: 1664-1078
Année de publication: 2023
Volumen: 14
Type: Article
D'autres publications dans: Frontiers in Psychology
Résumé
Introduction: Alzheimer’s disease (AD) is the most common form of dementia affecting the central nervous system, and alteration of several visual structures has been reported. Structural retinal changes are usually accompanied by changes in visual function in this disease. The aim of this study was to analyse the differences in visual function at different stages of the pathology (family history group (FH+), mild cognitive impairment (MCI), mild AD and moderate AD) in comparison with a control group of subjects with no cognitive decline and no family history of AD.Methods: We included 53 controls, 13 subjects with FH+, 23 patients with MCI, 25 patients with mild AD and, 21 patients with moderate AD. All were ophthalmologically healthy. Visual acuity (VA), contrast sensitivity (CS), colour perception, visual integration, and fundus examination were performed.Results: The analysis showed a statistically significant decrease in VA, CS and visual integration score between the MCI, mild AD and moderate AD groups compared to the control group. In the CS higher frequencies and in the colour perception test (total errors number), statistically significant differences were also observed in the MCI, mild AD and moderate AD groups with respect to the FH+ group and also between the control and AD groups. The FH+ group showed no statistically significant difference in visual functions compared to the control group. All the test correlated with the Mini Mental State Examination score and showed good predictive value when memory decline was present, with better values when AD was at a more advanced stage.Conclusion: Alterations in visual function appear in subjects with MCI and evolve when AD is established, being stable in the initial stages of the disease (mild AD and moderate AD). Therefore, visual psychophysical tests are a useful, simple and complementary tool to neuropsychological tests to facilitate diagnosis in the preclinical and early stages of AD.
Références bibliographiques
- Alves, (2023), J. Neurol. Neurosurg. Psychiatry, 94, pp. 448, 10.1136/JNNP-2022-329342
- (2020), Alzheimers Dement., 16, pp. 391, 10.1002/alz.12068
- (2022), 2022 Alzheimer’s disease facts and figures
- Baker, (1997), J. Am. Optom. Assoc., 68, pp. 483
- Bar, (2003), J. Cogn. Neurosci., 15, pp. 600, 10.1162/089892903321662976
- Berry, (2017), A comparison between number and letter acuities among patients with dementia
- Black, (1996), Brain Cogn., 31, pp. 188, 10.1006/BRCG.1996.0042
- Blanks, (1989), Brain Res., 501, pp. 364, 10.1016/0006-8993(89)90653-7
- Brenowitz, (2019), J. Gerontol. A Biol. Sci. Med. Sci., 74, pp. 890, 10.1093/gerona/gly264
- Brewer, (2016), Update on Dementia, 10.5772/64562
- Busche, (2016), Philos. Trans. R. Soc. B Biol. Sci., 371, pp. 1700, 10.1098/rstb.2015.0429
- Capizzano, (2004), J. Neurol. Neurosurg. Psychiatry, 75, pp. 822, 10.1136/JNNP.2003.019273
- Cerquera-Jaramillo, (2018), Neural Plast., 2018, pp. 2941783, 10.1155/2018/2941783
- Chan, (2001), J. Neurol. Neurosurg. Psychiatry, 71, pp. 515, 10.1136/JNNP.71.4.515
- Chang, (2022), Healthcare, 10, pp. 20, 10.3390/HEALTHCARE10010020
- Chen, (2009), J. Formos. Med. Assoc., 108, pp. 754, 10.1016/S0929-6646(09)60402-2
- Colligris, (2018), J. Ophthalmol., 2018, pp. 1, 10.1155/2018/8538573
- Cronin-Golomb, (1995), Optom. Vis. Sci., 72, pp. 168, 10.1097/00006324-199503000-00004
- Cronin-Golomb, (2007), Cortex, 43, pp. 952, 10.1016/S0010-9452(08)70693-2
- Cunha, (2016), Graefes Arch. Clin. Exp. Ophthalmol., 254, pp. 2079, 10.1007/s00417-016-3430-y
- Donix, (2010), Am. J. Psychiatry, 167, pp. 1399, 10.1176/appi.ajp.2010.09111575
- Elliott, (1987), Ophthalmic Physiol. Opt., 7, pp. 415, 10.1111/J.1475-1313.1987.TB00771.X
- Ferreira-Vieira, (2016), Curr. Neuropharmacol., 14, pp. 101, 10.2174/1570159X13666150716165726
- Fischer, (2016), J. Am. Geriatr. Soc., 64, pp. 1981, 10.1111/jgs.14308
- Garcia-Marin, (2009), Front. Neuroanat., 3, pp. 28, 10.3389/neuro.05.028.2009
- Garcia-Martin, (2014), Ophthalmology, 121, pp. 1149, 10.1016/j.ophtha.2013.12.023
- Gilmore, (1996), Ophthalmic Lit., 1, pp. 49, 10.1097/00006324-199502000-00007
- Huang, (2004), Arch. Neurol., 61, pp. 1930, 10.1001/archneur.61.12.1930
- Huna-Baron, (2013), Graefes Arch. Clin. Exp. Ophthalmol., 251, pp. 585, 10.1007/S00417-012-2073-X/FIGURES/1
- Hutton, (1993), Neurology, 43, pp. 2328, 10.1212/WNL.43.11.2328
- Jindal, (2015), Mol. Neurobiol., 51, pp. 885, 10.1007/s12035-014-8733-6
- Kim, (2022), PLoS One, 17, pp. e0262226, 10.1371/JOURNAL.PONE.0262226
- Koronyo, (2017), JCI insight, 2, pp. e93621, 10.1172/jci.insight.93621
- Lakshminarayanan, (1996), Neurol. Res., 18, pp. 9, 10.1080/01616412.1996.11740369
- Levine, (1993), Neurology, 43, pp. 305, 10.1212/wnl.43.2.305
- Lewis, (1987), J. Neurosci., 7, pp. 1799, 10.1523/jneurosci.07-06-01799.1987
- Liutkevičienė, (2013), Med, 49, pp. 43, 10.3390/MEDICINA49060043
- Martin, (1997), Eur. J. Neurosci., 9, pp. 1536, 10.1111/J.1460-9568.1997.TB01509.X
- Massoud, (2002), Alzheimer Dis. Assoc. Disord., 16, pp. 31, 10.1097/00002093-200201000-00005
- McKhann, (2011), Alzheimers Dement., 7, pp. 263, 10.1016/j.jalz.2011.03.005
- Naël, (2019), Eur. J. Epidemiol., 34, pp. 141, 10.1007/s10654-018-00478-y
- Neargarder, (2003), J. Gerontol. B Psychol. Sci. Soc. Sci., 58, pp. P54, 10.1093/geronb/58.1.P54
- Nobili, (1997), Vis. Res., 37, pp. 3559, 10.1016/S0042-6989(97)00076-X
- Oliveira-Souza, (2017), Neuroscience, 354, pp. 43, 10.1016/J.NEUROSCIENCE.2017.04.021
- Pache, (2003), Age Ageing, 32, pp. 422, 10.1093/AGEING/32.4.422
- Pelletier, (2016), Am. Fam. Physician, 94, pp. 219
- Polo, (2017), Eye, 31, pp. 1034, 10.1038/EYE.2017.23
- Rami, (2007), Neurologia, 22, pp. 342
- Ramirez, (2017), Front. Aging Neurosci., 9, pp. 214, 10.3389/fnagi.2017.00214
- Ramírez-Toraño, (2021), A Structural Connectivity Disruption One Decade before the Typical Age for Dementia: A study in Healthy Subjects with Family History of Alzheimer’s Disease
- Rehan, (2021), J. Alzheimers Dis., 83, pp. 1125, 10.3233/JAD-201521
- Risacher, (2013), Neurobiol. Aging, 34, pp. 1133, 10.1016/j.neurobiolaging.2012.08.007
- Risacher, (2020), Brain Commun., 2, pp. fcaa019, 10.1093/braincomms/fcaa019
- Rizzo, (1998), Brain, 121, pp. 2259, 10.1093/brain/121.12.2259
- Rojas, Diagnostics, 10, pp. 75, 10.3390/diagnostics10020075
- Rojas, Front. Neurosci., 14, pp. 6858, 10.3389/fnins.2020.566858
- Ross, (1985), Br. J. Ophthalmol., 69, pp. 51, 10.1136/BJO.69.1.51
- Sadun, (1987), Am J. Ophthalmol., 104, pp. 113, 10.1016/0002-9394(87)90001-8
- Salamone, (2009), Dement. Geriatr. Cogn. Disord., 27, pp. 501, 10.1159/000218366
- Salobrar-García, (2019), PLoS One, 14, pp. e0220535, 10.1371/journal.pone.0220535
- Salobrar-García, (2015), J. Ophthalmol., 2015, pp. 1, 10.1155/2015/736949
- Sanford, (2017), Clin. Geriatr. Med., 33, pp. 325, 10.1016/J.CGER.2017.02.005
- Sano, (1991), Arch. Neurol., 48, pp. 269, 10.1001/archneur.1991.00530150037014
- Sartucci, (2010), Brain Res. Bull., 82, pp. 169, 10.1016/J.BRAINRESBULL.2010.04.001
- Saumier, (2005), Brain Cogn., 59, pp. 299, 10.1016/J.BANDC.2004.02.060
- Savaskan, (2002), J. Histochem. Cytochem., 50, pp. 519, 10.1177/002215540205000408
- Schliebs, (2006), J. Neural Transm., 113, pp. 1625, 10.1007/s00702-006-0579-2
- Schlotterer, (1984), Brain, 107, pp. 309, 10.1093/brain/107.1.309
- Smith, (2021), Aging Clin. Exp. Res., 33, pp. 2695, 10.1007/s40520-021-01814-1
- Sperling, (2011), Alzheimers Dement., 7, pp. 280, 10.1016/j.jalz.2011.03.003
- Swenor, (2019), J. Gerontol. A Biol. Sci. Med. Sci., 74, pp. 1454, 10.1093/gerona/gly244
- Tran, (2020), JAMA Ophthalmol., 138, pp. 624, 10.1001/JAMAOPHTHALMOL.2020.0959
- Varadaraj, (2021), JAMA Netw. Open, 4, pp. 1, 10.1001/jamanetworkopen.2021.17416
- Vidal, (2022), Investig. Ophthalmol. Vis. Sci., 63, pp. 20, 10.1167/iovs.63.5.20
- Walker, (2020), Free Neuropathol., 1, pp. 1, 10.17879/FREENEUROPATHOLOGY-2020-3025
- Ward, (2018), Ann. Neurol., 83, pp. 730, 10.1002/ANA.25196
- Wu, (2022), J. Neuro-Ophthalmol., 42, pp. 79, 10.1097/WNO.0000000000001228