Prefrontal transcranial direct current stimulation over the right prefrontal cortex reduces proactive and reactive control performance towards emotional material in healthy individuals

  1. Marie-Anne Vanderhasselt 1
  2. Alvaro Sanchez-Lopez 2
  3. Matias Pulopulos 1
  4. Lais B. Razza 1
  5. Stefanie De Smet 1
  6. André Russowsky Brunoni 3
  7. Chris Baeken 1
  8. Rudi De Raedt 1
  9. Jens Allaert 1
  1. 1 Ghent University
    info

    Ghent University

    Gante, Bélgica

    ROR https://ror.org/00cv9y106

  2. 2 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  3. 3 Universidade de Sao Paulo, Sao Paulo, Brazil
Revista:
International journal of clinical and health psychology

ISSN: 1697-2600

Año de publicación: 2023

Volumen: 23

Número: 4

Páginas: 51-60

Tipo: Artículo

DOI: 10.1016/J.IJCHP.2023.100384 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: International journal of clinical and health psychology

Resumen

The prefrontal cortex plays a crucial role in cognitive processes, both during anticipatory and reactive modes of cognitive control. Transcranial Direct Current Stimulation (tDCS) can modulate these cognitive resources. However, there is a lack of research exploring the impact of tDCS on emotional material processing in the prefrontal cortex, particularly in regard to proactive and reactive modes of cognitive control. In this study, 35 healthy volunteers underwent both real and sham tDCS applied to the right prefrontal cortex in a counterbalanced order, and then completed the Cued Emotion Control Task (CECT). Pupil dilation, a measure of cognitive resource allocation, and behavioral outcomes, such as reaction time and accuracy, were collected. The results indicate that, as compared to sham stimulation, active right-sided tDCS reduced performance and resource allocation in both proactive and reactive modes of cognitive control. These findings highlight the importance of further research on the effects of tDCS applied to the right prefrontal cortex on cognitive engagement, particularly for clinical trials utilizing the present electrode montage in combination with cognitive interventions.

Referencias bibliográficas

  • Allaert, J., Sanchez-Lopez, A., De Raedt, R., Baeken, C., & Vanderhasselt, M.-. A. (2019). Inverse effects of tDCS over the left versus right DLPC on emotional processing: A pupillometry study. PloS one, 14,(6) e0218327. doi:10.1371/journal.pone.0218327.
  • Antal, A., Alekseichuk, I., Bikson, M., oller, J., Brunoni, A. R., Brockm Chen, R., et al. (2017). Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clinical Neurophysiology: Of.cial Journal of the International Federation of Clinical Neurophysiology, 128(9), 1774–1809. doi:10.1016/j.clinph.2017.06.001.
  • Bates, D., Machler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models Usinglme4. Journal of Statistical Software, (1), 67. doi:10.18637/jss.v067.i01.
  • Boudewyn, M. A., Scangos, K., Ranganath, C., & Carter, C. S. (2020). Using prefrontal transcranial direct current stimulation (tDCS) to enhance proactive cognitive control in schizophrenia. Neuropsychopharmacology: Of.cial Publication of the American College of Neuropsychopharmacology, 45(11), 1877–1883. doi:10.1038/s41386-020-0750-8.
  • Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms frame­work. Trends in Cognitive Sciences, 16(2), 106–113. doi:10.1016/j.tics.2011.12.010.
  • Braver, T. S., Paxton, J. L., Locke, H. S., & Barch, D. M. (2009). Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proceedings of the National Acad­emy of Sciences of the United States of America, 106(18), 7351–7356. doi:10.1073/pnas.0808187106.
  • Brunoni, A. R., & Vanderhasselt, M.-. A. (2014). Working memory improvement with non­invasive brain stimulation of the dorsolateral prefrontal cortex: A systematic review and meta-analysis. Brain and Cognition, 86,1–9. doi:10.1016/j.bandc.2014.01.008.
  • Dedoncker, J., Baeken, C., De Raedt, R., & Vanderhasselt, M.-. A. (2021). Combined trans­cranial direct current stimulation and psychological interventions: State of the art and promising perspectives for clinical psychology. Biological Psychology, 158, 107991. doi:10.1016/j.biopsycho.2020.107991.
  • Dedoncker, J., Brunoni, A. R., Baeken, C., & Vanderhasselt, M.-. A. (2016). A systematic review and meta-analysis of the effects of transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex in healthy and neuropsychiatric samples: In.uence of stimulation parameters. Brain Stimulation, 9(4), 501–517. doi:10.1016/j.brs.2016.04.006.
  • De Raedt, R., & Hooley, J. M. (2016). The role of expectancy and proactive control in stress regulation: A neurocognitive framework for regulation expectation. Clinical Psychology Review, 45,45–55. doi:10.1016/j.cpr.2016.03.005.
  • De Smet, S., Nikolin, S., Moffa, A., Suen, P., Vanderhasselt, M.-. A., Brunoni, A. R., et al. (2021). Determinants of sham response in tDCS depression trials: A systematic review and meta-analysis. Progress in Neuro-Psychopharmacology & Biolog­ical Psychiatry, 109, 110261. doi:10.1016/j.pnpbp.2021.110261.
  • Dixon, P. (2008). Models of accuracy in repeated measures designs. Journal of Memory and Language, 59(4), 447–456. doi:10.1016/j.jml.2007.11.004.
  • Faul, F., Erdfelder, E., Lang, A.-. G., & Buchner, A (2007). G*Power 3: A .exible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(Issue 2), 175–191. doi:10.3758/bf03193146.
  • Feeser, M., Prehn, K., Kazzer, P., Mungee, A., & Bajbouj, M. (2014). Transcranial direct current stimulation enhances cognitive control during emotion regulation. Brain Stim­ulation, 7(1), 105–112. doi:10.1016/j.brs.2013.08.006.
  • Fox, J., & Weisberg, S. (2018). An R companion to applied regression. SAGE Publications. https://books.google.com/books/about/An_R_Companion_to_Applied_Regression. html?hl=&id=uPNrDwAAQBAJ.
  • Fregni, F., El-Hagrassy, M. M., Pacheco-Barrios, K., Carvalho, S., Leite, J., Simis, M., et al. (2021). Evidence-based guidelines and secondary meta-analysis for the use of transcranial direct current stimulation in neurological and psychiatric disor­ders. The International Journal of Neuropsychopharmacology /Of.cial Scienti.c Journal of the Collegium Internationale Neuropsychopharmacologicum, 24(4), 256–313. doi:10.1093/ijnp/pyaa051.
  • Friehs, M. A., Frings, C., & Hartwigsen, G. (2021). Effects of single-session transcranial direct current stimulation on reactive response inhibition. Neuroscience and Biobehav­ioral Reviews, 128, 749–765. doi:10.1016/j.neubiorev.2021.07.013.
  • Goeleven, E., De Raedt, R., Leyman, L., & Verschuere, B. (2008). The Karolinska directed emotional faces: A validation study. Cognition & Emotion, 22(6), 1094–1118. doi:10.1080/02699930701626582.
  • Gomez-Ariza, C. J., Martín, M. C., & Morales, J. (2017). Tempering proactive cognitive control by means of tDCS of the lateral prefrontal cortex. Brain stimulation: (p. 360) 10. doi:10.1016/j.brs.2017.01.059.
  • Gomez-Ariza, C. J., Martín, M. C., & Morales, J. (2017). Tempering proactive cogni­tive control by transcranial direct current stimulation of the right (but Not the Left) lateral prefrontal cortex. Frontiers in Neuroscience, 11.doi:10.3389/fnins.2017.00282.
  • Huang, S., Zhu, Z., Zhang, W., Chen, Y., & Zhen, S. (2017). Trait impulsivity components correlate differently with proactive and reactive control. PloS one, 12,(4) e0176102. doi:10.1371/journal.pone.0176102.
  • Kalisch, R. (2009). The functional neuroanatomy of reappraisal: Time matters. Neurosci­ence and Biobehavioral Reviews, 33(8), 1215–1226. doi:10.1016/j.neubiorev.2009.06.003.
  • Klem, G. H., Luders, H. O., Jasper, H. H., & Elger, C. (1999). The ten-twenty electrode sys­tem of the International Federation. The international federation of clinical neuro­physiology. Electroencephalography and Clinical Neurophysiology. Supplement, 52,3–6. https://www.ncbi.nlm.nih.gov/pubmed/10590970.
  • Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13). doi:10.18637/jss.v082.i13.
  • Leffa, D. T., Grevet, E. H., Bau, C. H. D., Schneider, M., Ferrazza, C. P., da Silva, R. F., et al. (2022). Transcranial Direct Current Stimulation vs Sham for the Treatment of Inattention in Adults With Attention-De.cit/Hyperactivity Disorder: The TUNED Randomized Clinical Trial. JAMA psychiatry, 79(9), 847–856. doi:10.1001/jamapsychiatry.2022.2055.
  • Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. Jour­nal of Experimental Social Psychology, 49(4), 764–766. doi:10.1016/j. jesp.2013.03.013.
  • Lo, S., & Andrews, S. (2015). To transform or not to transform: Using generalized linear mixed models to analyse reaction time data. Frontiers in Psychology, 6, 1171. doi:10.3389/fpsyg.2015.01171.
  • Lundqvist, D., Flykt, A., & Ohman, A. (2015). Karolinska Directed Emotional Faces. Psy­cTESTS Dataset. doi:10.1037/t27732-000.
  • Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG-and MEG-data. Journal of Neuroscience Methods, 164(1), 177–190. doi:10.1016/j.jneu­meth.2007.03.024.
  • MATLAB and Statistics Toolbox Release (2012). The MathWorks, Inc., Natick, Massachu­setts, United States.
  • McCormack, H. M., Horne, D. J., & Sheather, S. (1988). Clinical applications of visual ana­logue scales: A critical review. Psychological Medicine, 18(4), 1007–1019. doi:10.1017/s0033291700009934.
  • Miniussi, C., Harris, J. A., & Ruzzoli, M. (2013). IS 38. Non-invasive brain stimulation in cognitive neuroscience. Clinical Neurophysiology, 124(10), e51. doi:10.1016/j.clinph.2013.04.057.
  • Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., et al. (2008). Transcranial direct current stimulation: State of the art. 2008 Brain Stimulation, 1(3), 206–223. doi:10.1016/j.brs.2008.06.004.
  • Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cor­tex by weak transcranial direct current stimulation. The Journal of Physiology, 527(Pt 3), 633–639. doi:10.1111/j.1469-7793.2000.t01-1-00633.x.
  • Pulopulos, M. M., Allaert, J., Vanderhasselt, M.-. A., Sanchez-Lopez, A., De Witte, S., Baeken, C., et al. (2022). Effects of HF-rTMS over the left and right DLPFC on proactive and reactive cognitive control. Social Cognitive and Affective Neuroscience, 17 (1), 109–119. doi:10.1093/scan/nsaa082.
  • Puonti, O., Van Leemput, K., Saturnino, G. B., Siebner, H. R., Madsen, K. H., & Thielscher, A. (2020). Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling. NeuroImage, 219, 117044. doi:10.1016/j.neuroimage.2020.117044.
  • Rondeel, E. W. M., van Steenbergen, H., Holland, R. W., & van Knippenberg, A. (2015). A closer look at cognitive control: Differences in resource allocation during updating, inhibition and switching as revealed by pupillometry. Frontiers in Human Neuroscience, 9, 494. doi:10.3389/fnhum.2015.00494.
  • Sanchez, A., Vanderhasselt, M.-. A., Baeken, C., & De Raedt, R. (2016). Effects of tDCS over the right DLPFC on attentional disengagement from positive and negative faces: An eye-tracking study. Cognitive, Affective, & Behavioral Neuroscience, 16(6), 1027–1038. doi:10.3758/s13415-016-0450-3.
  • Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., et al. (1998). The Mini-International Neuropsychiatric Interview (M.I.N. I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. The Journal of Clinical Psychiatry, 59(Suppl 20), 34–57. 2233quiz https://www.ncbi.nlm.nih.gov/pubmed/9881538.
  • Sjak-Shie, E. E. (2022). PhysioData Toolbox (Version 0.6.3) [Computer software]. Retrieved from https://PhysioDataToolbox.leidenuniv.nl
  • Soleimani, G., Kuplicki, R., Camchong, J., Opitz, A., Paulus, M. P., Lim, K. O., et al. (2022). Are we really targeting and stimulating DLPFC by placing tES electrodes over F3/F4? bioRxiv. doi:10.1101/2022.12.01.22282886.
  • Team, R. C., & Others. (2013). R: A language and environment for statistical computing. https://cran.microsoft.com/snapshot/2014-09-08/web/packages/dplR/vignettes/xdate-dplR.pdf
  • Vanderhasselt, M.-. A., De Raedt, R., Brunoni, A. R., Campanh~a, C., Baeken, C., Remue, J., et al. (2013). tDCS over the left prefrontal cortex enhances cognitive control for positive affective stimuli. PloS one, 8(5), e62219. doi:10.1371/journal.pone.0062219.
  • Vanderhasselt, M.-. A., De Raedt, R., De Paepe, A., Aarts, K., Otte, G., Van Dorpe, J., et al. (2014). Abnormal proactive and reactive cognitive control during con.ict processing in major depression. Journal of Abnormal Psychology, 123(1), 68– 80. doi:10.1037/a0035816.
  • Vanderhasselt, M.-. A., De Raedt, R., Leyman, L., & Baeken, C. (2009). Acute effects of repetitive transcranial magnetic stimulation on attentional control are related to anti­depressant outcomes. Journal of Psychiatry & Neuroscience: JPN, 34(2), 119–126. https://www.ncbi.nlm.nih.gov/pubmed/19270762.
  • Vanderhasselt, M.-. A., Remue, J., Ng, K. K., & De Raedt, R. (2014). The interplay between the anticipation and subsequent online processing of emotional stimuli as measured by pupillary dilatation: The role of cognitive reappraisal. Frontiers in Psychology, 5, 207. doi:10.3389/fpsyg.2014.00207.
  • Vanderhasselt, M.-. A., Sanchez, A., Josephy, H., Baeken, C., Brunoni, A. R., & De Raedt, R. (2017). Anodal tDCS over the right dorsolateral prefrontal cortex modulates cognitive processing of emotional information as a function of trait rumination in healthy volunteers. Biological Psychology, 123,111–118. doi:10.1016/j.biopsycho.2016.12.006.
  • van der Meer, E., Beyer, R., Horn, J., Foth, M., Bornemann, B., Ries, J., et al. (2010). Resource allocation and .uid intelligence: Insights from pupillometry. Psychophysiol­ogy, 47(1), 158–169. doi:10.1111/j.1469-8986.2009.00884.x.
  • Weller, S., Nitsche, M. A., & Plewnia, C. (2020). Enhancing cognitive control training with transcranial direct current stimulation: A systematic parameter study. Brain Stimula­tion, 13(5), 1358–1369. doi:10.1016/j.brs.2020.07.006.
  • Wel, P.van der, van der Wel, P., & van Steenbergen, H (2018). Pupil dilation as an index of effort in cognitive control tasks: A review. Psychonomic Bulletin & Review: (pp. 20052015)25. doi:10.3758/s13423-018-1432-y.
  • Zenon, A. (2019). Eye pupil signals information gain. Proceedings. Biological Sciences /The Royal Society, 286, 20191593. doi:10.1098/rspb.2019.1593 1911.