Intuitionistic Mereology II: Overlap and Disjointness

  1. Maffezioli, Paolo
  2. Varzi, Achille C.
Revista:
Journal of Philosophical Logic

ISSN: 0022-3611 1573-0433

Año de publicación: 2023

Volumen: 52

Número: 4

Páginas: 1197-1233

Tipo: Artículo

DOI: 10.1007/S10992-023-09703-W GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of Philosophical Logic

Resumen

This paper extends the axiomatic treatment of intuitionistic mereology introduced in Maffezioli and Varzi (Synthese, 198(S18), 4277–4302 2021) by examining the behavior of constructive notions of overlap and disjointness. We consider both (i) various ways of defining such notions in terms of other intuitionistic mereological primitives, and (ii) the possibility of treating them as mereological primitives of their own.

Referencias bibliográficas

  • Baroni, M. A. (2005). Constructive suprema. Journal of Universal Computer Science, 11, 1865–1877.
  • Bishop, E., & Bridges, D. S. (1985). Constructive Analysis. Berlin: Springer.
  • Brouwer, L. E. J. (1919). Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten. Zweiter Teil: Theorie der punktmengen. Koninklijke Akademie van Wetenschappen te Amsterdam. Verhandelingen (Eerste Sectie), 7, 1–33.
  • Brouwer, L. E. J. (1923). Intuïtionistische splitsing van mathematische grondbegrippen. Koninklijke Akademie van Wetenschappen te Amsterdam. Verslagen, 32, 877–880. English translation by W. P. van Stigt (1998), Intuitionist splitting of the fundamental notions of mathematics, in P. Mancosu (ed.) From Brouwer to Hilbert. The Debate on the Foundations of Mathematics in the 1920s (pp. 286–289), Oxford: Oxford University Press.
  • Ciraulo, F. (2013). Intuitionistic overlap structures. Logic and Logical Philosophy, 22, 201–212.
  • Ciraulo, F., Maietti, M. E., & Toto, P. (2013). Constructive version of Boolean algebra. Logic Journal of the IJPL, 21, 44–62.
  • Ciraulo, F., & Contente, M. (2020). Overlap algebras: A constructive look at complete Boolean algebras. Logical Methods in Computer Science, 16, 1–13.
  • Cotnoir, A. J., & Varzi, A. C. (2021). Mereology. Oxford: Oxford University Press.
  • De Risi, V. (2020). Did Euclid prove Elements I,1? The early modern debate on intersections and continuity. In P. Beeley, Y. Nasifoglu, & B. Wardhaugh (Eds.). Reading Mathematics in Early Modern Europe (pp. 12–32). New York: Routledge.
  • De Risi, V. (2021). Gapless lines and gapless proofs: Intersections and continuity in Euclid’s Elements. Apeiron, 54, 233–259.
  • Gentzen, G. (1935). Untersuchungen über das logische Schliessen. Mathematische Zeitschrift, 39, 176–210, 405–431. Eng. trans. by M. E. Szabo (1964–1965) Investigations into logical deduction, American Philosophical Quarterly, 1, 288–306 and 2, 204–218.
  • Goodman, N. (1951). The Structure of Appearance. Cambridge (MA): Harvard University Press. Third edition: Dordrecht: Reidel, 1977.
  • Goodman, N., & Myhill, J. (1978). Choice implies excluded middle. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 24, 461.
  • Heath, T. L. (1908). The Thirteen Books of Euclid’s Elements. Cambridge: Cambridge University Press.
  • Heyting, A. (1928). Zur intuitionistischen Axiomatik der projektiven Geometrie. Mathematische Annalen, 98, 491–538.
  • Heyting, A. (1956). Intuitionism. An Introduction, Amsterdam: North-Holland.
  • Hilbert, D. (1899). Grundlagen der Geometrie, Leipzig: Teubner. Tenth edition, revised and enlarged by P. Bernays (1968). English translation by L. Unger (1971), Foundations of Geometry, La Salle (IL): Open Court.
  • Hovda, P. (2009). What is classical mereology?. Journal of Philosophical Logic, 38, 55–82.
  • Jankov, V. A. (1968). Calculus of the weak law of the excluded middle. Mathematics of the USSR – Izvestiya, 2, 997–1004.
  • Kripke, S. A. (1965). Semantical analysis of intuitionistic logic I. In Crossley J. N. M. A. E. Dummett (Eds.). Formal Systems and Recursive Functions. Proceedings of the 8th Logic Colloquium (pp. 92–130). Amsterdam: North-Holland.
  • Leonard, H. S., & Goodman, N (1940). The calculus of individuals and its uses. The Journal of Symbolic Logic, 5, 45–55.
  • Leśniewski, S. (1916). Podstawy ogólnej teoryi mnogości. I, Moskow: Prace Polskiego Koła Naukowego w Moskwie. English translation by D. I. Barnett (1992) Foundations of the general theory of sets I. In Collected Works (pp. 129–173), edited by S. J. Surma, J. T. Srzednicki, D. I. Barnett, & F. V. Rickey, Dordrecht: Kluwer.
  • Leśniewski, S. (1927). O podstawach matematyki, Przegląd Filozoficzny, 30:164–206; 31:261–291; 32:60–101; 33:77–105; 34:142–170. English translation by D. I. Barnett (1992) On the foundations of mathematics, in Collected Works (pp. 174–382), edited by S. J. Surma, J. T. Srzednicki, D. I. Barnett, & F. V. Rickey, Dordrecht: Kluwer.
  • Maffezioli, P., & Varzi, A. C. (2021). Intuitionistic mereology. Synthese, 198(S18), 4277–4302.
  • Myhill, J. (1975). Constructive set theory. The Journal of Symbolic Logic, 40, 347–382.
  • Negri, S. (1999). Sequent calculus proof theory of intuitionistic apartness and order relations. Archive for Mathematical Logic, 38, 521–547.
  • Parsons, J. (2014). The many primitives of mereology. In S. Kleinschmidt (Ed.). Mereology and Location (pp. 3–12). Oxford: Oxford University Press.
  • Pietruszczak, A. (2000). Metamereology. Toruń: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika. Revised English edition (2018) Metamereology. Toruń: Nicolaus Copernicus University Publishing House.
  • Pietruszczak, A. (2015). Classical mereology is not elementarily axiomatizable. Logic and Logical Philosophy, 24, 485–498.
  • von Plato, J. (1999). Order in open intervals of computable reals. Mathematical Structures in Computer Science, 9, 103–108.
  • von Plato, J. (2001). Positive lattices. In P. Schuster, U. Berger, & H. Osswald (Eds.). Reuniting the Antipodes. Constructive and Nonstandard Views of the Continuum (pp. 185–197). Dordrecht: Kluwer.
  • Sambin, G. (Forthcoming). The Basic Picture. Structures for Constructive Topology. Oxford: Oxford University Press.
  • Scott, D. (1968). Extending the topological interpretation to intuitionistic analysis. Compositio Mathematica, 20, 194–210.
  • Simons, P. M. (1987). Parts. A Study in Ontology. Oxford: Clarendon Press.
  • Tarski, A. (1959). What is elementary geometry?. In L. Henkin, P. Suppes, & A. Tarski (Eds.) The Axiomatic Method, with Special Reference to Geometry and Physics. Proceedings of an International Symposium (pp. 16–29). Amsterdam: North-Holland.
  • Tennant, N. (2020). Does choice really imply excluded middle? Part I: Regimentation of the Goodman-Myhill result, and its immediate reception. Philosophia Mathematica, 28, 139–171.
  • Tennant, N. (2021). Does choice really imply excluded middle? Part II: Historical, philosophical, and foundational reflections on the Goodman-Myhill result. Philosophia Mathematica, 29, 28–63.
  • Troelstra, A. S., & van Dalen, D. (1988). Constructivism in Mathematics. An Introduction. Volume I. Amsterdam: North-Holland.
  • Tsai, H. -C. (2018). General extensional mereology is finitely axiomatizable. Studia Logica, 106, 809–826.
  • van Dalen, D. (1996). Outside as a primitive notion in constructive projective geometry. Geometriae Dedicata, 60, 107–111.