Hydrogen Sulfide Plays a Key Role in the Inhibitory Neurotransmission to the Pig Intravesical Ureter

  1. Vítor S. Fernandes 1
  2. Ana S. F. Ribeiro 1
  3. Pilar Martínez 3
  4. María Elvira López-Oliva 1
  5. María Victoria Barahona 2
  6. Luis M. Orensanz 5
  7. Ana Martínez-Sáenz 1
  8. Paz Recio 1
  9. Sara Benedito 1
  10. Salvador Bustamante 4
  11. Albino García Sacristán 1
  12. Dolores Prieto 1
  13. Medardo Hernández 1
  1. 1 Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
  2. 2 Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
  3. 3 Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
  4. 4 Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
  5. 5 Departamento de Investigación, Hospital Universitario Ramón y Cajal, Madrid, Spain
Revista:
PLoS ONE

ISSN: 1932-6203

Año de publicación: 2014

Volumen: 9

Número: 11

Páginas: e113580

Tipo: Artículo

DOI: 10.1371/JOURNAL.PONE.0113580 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: PLoS ONE

Objetivos de desarrollo sostenible

Resumen

According to previous observations nitric oxide (NO), as well as an unknown nature mediator are involved in the inhibitory neurotransmission to the intravesical ureter. This study investigates the hydrogen sulfide (H2S) role in the neurogenic relaxation of the pig intravesical ureter. We have performed western blot and immunohistochemistry to study the expression of the H2S synthesis enzymes cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS), measurement of enzymatic production of H2S and myographic studies for isometric force recording. Immunohistochemical assays showed a high CSE expression in the intravesical ureter muscular layer, as well as a strong CSE-immunoreactivity within nerve fibres distributed along smooth muscle bundles. CBS expression, however, was not consistently observed. On ureteral strips precontracted with thromboxane A2 analogue U46619, electrical field stimulation (EFS) and the H2S donor P-(4-methoxyphenyl)-P-4-morpholinylphosphinodithioic acid (GYY4137) evoked frequency- and concentration-dependent relaxations. CSE inhibition with DL-propargylglycine (PPG) reduced EFS-elicited responses and a combined blockade of both CSE and NO synthase (NOS) with, respectively, PPG and NG-nitro-L-arginine (L-NOARG), greatly reduced such relaxations. Endogenous H2S production rate was reduced by PPG, rescued by addition of GYY4137 and was not changed by L-NOARG. EFS and GYY4137 relaxations were also reduced by capsaicin-sensitive primary afferents (CSPA) desensitization with capsaicin and blockade of ATP-dependent K+ (KATP) channels, transient receptor potential A1 (TRPA1), transient receptor potential vanilloid 1 (TRPV1), vasoactive intestinal peptide/pituitary adenylyl cyclase-activating polypeptide (VIP/PACAP) and calcitonin gene-related peptide (CGRP) receptors with glibenclamide, HC030031, AMG9810, PACAP6–38 and CGRP8–37, respectively. These results suggest that H2S, synthesized by CSE, is involved in the inhibitory neurotransmission to the pig intravesical ureter, through an NO-independent pathway, producing smooth muscle relaxation via KATP channel activation. H2S also promotes the release of inhibitory neuropeptides, as PACAP 38 and/or CGRP from CSPA through TRPA1, TRPV1 and related ion channel activation.

Referencias bibliográficas

  • PK Moore, (2003), Trends Pharmacol Sci, 24, pp. 609, 10.1016/j.tips.2003.10.007
  • R Wang, (2002), FASEB J, 16, pp. 1792, 10.1096/fj.02-0211hyp
  • R Wang, (2003), Antioxid Redox Signal, 5, pp. 493, 10.1089/152308603768295249
  • W Zhao, (2002), Am J Physiol Heart Circ Physiol, 283, pp. H474, 10.1152/ajpheart.00013.2002
  • W Zhao, (2001), EMBO J, 20, pp. 6008, 10.1093/emboj/20.21.6008
  • M Bhatia, (2005), IUBMB Life, 57, pp. 603, 10.1080/15216540500217875
  • E Lowicka, (2007), Pharmacol Rep, 59, pp. 4
  • Q Li, (2013), Nitric Oxide, 35, pp. 21, 10.1016/j.niox.2013.07.001
  • R Patacchini, (2004), Br J Pharmacol, 142, pp. 31, 10.1038/sj.bjp.0705764
  • R Patacchini, (2005), Eur J Pharmacol, 509, pp. 171, 10.1016/j.ejphar.2005.01.005
  • VS Fernandes, (2013), J Urol, 190, pp. 746, 10.1016/j.juro.2013.02.103
  • VS Fernandes, (2013), J Urol, 189, pp. 1567, 10.1016/j.juro.2012.10.006
  • D Prieto, (1993), Res Vet Sci, 54, pp. 312, 10.1016/0034-5288(93)90128-3
  • D Prieto, (1994), J Auton Nerv Syst, 47, pp. 159, 10.1016/0165-1838(94)90177-5
  • A Di Benedetto, (2013), Neurourol Urodyn, 32, pp. 349, 10.1002/nau.22310
  • M Hernández, (1995), Neurosci Lett, 186, pp. 33, 10.1016/0304-3940(94)11275-N
  • M Hernández, (1997), Br J Pharmacol, 120, pp. 609, 10.1038/sj.bjp.0700952
  • C Blok, (1985), J Urol, 134, pp. 175, 10.1016/S0022-5347(17)47051-0
  • M Hernández, (1992), Br J Pharmacol, 107, pp. 924, 10.1111/j.1476-5381.1992.tb13387.x
  • V Gil, (2011), Br J Pharmacol, 164, pp. 485, 10.1111/j.1476-5381.2011.01431.x
  • S Bustamante, (2000), J Urol, 164, pp. 1371, 10.1016/S0022-5347(05)67201-1
  • G Tang, (2005), Mol Pharmacol, 68, pp. 1757, 10.1124/mol.105.017467
  • M Hernández, (2008), Br J Pharmacol, 153, pp. 1251, 10.1038/sj.bjp.0707669
  • L Li, (2008), Circulation, 117, pp. 2351, 10.1161/CIRCULATIONAHA.107.753467
  • G Yang, (2008), Science, 322, pp. 587, 10.1126/science.1162667
  • AK Mustafa, (2009), Sci Signal, 2(68), pp. re2
  • M Kajimura, (2010), Antioxid Redox Signal, 13, pp. 157, 10.1089/ars.2009.2657
  • S Muzaffar, (2008), Br J Pharmacol, 155, pp. 984, 10.1038/bjp.2008.326
  • KE Andersson, (2010), Neurourol Urodyn, 29, pp. 97, 10.1002/nau.20784
  • R de Jongh, (2007), BJU Int, 100, pp. 419, 10.1111/j.1464-410X.2007.07011.x
  • A Martínez-Saénz, (2011), Neurourol Urodyn, 30, pp. 151, 10.1002/nau.20960
  • T Streng, (2008), Eur Urol, 53, pp. 391, 10.1016/j.eururo.2007.10.024
  • M Hernández, (2004), Br J Pharmacol, 141, pp. 123, 10.1038/sj.bjp.0705582
  • H Ogawa, (2012), Neuroscience, 218, pp. 335, 10.1016/j.neuroscience.2012.05.044
  • KJ Jung, (2013), Biochim Biophys Acta, 1832, pp. 1989, 10.1016/j.bbadis.2013.06.015
  • KA Edyvane, (1992), J Auton Nerv Syst, 39, pp. 127, 10.1016/0165-1838(92)90053-J
  • P Santicioli, (1998), Pharmacol Rev, 50, pp. 683
  • F Porpiglia, (2000), Urology, 56, pp. 579, 10.1016/S0090-4295(00)00732-9