Plant Defence Induction by Meyerozyma guilliermondii in Vitis vinifera L.

  1. Alonso de Robador, José María 1
  2. Ortega Pérez, Nora 1
  3. Sánchez Ballesta, Mª Teresa 3
  4. Tello Mariscal, María Luisa 2
  5. Pintos López, Beatriz 1
  6. Gómez Garay, Aranzazu 1
  1. 1 Research Group FiVe-A, Plant Physiology Unit, Genetic, Physiology and Microbiology Department, Faculty of Biological Sciences, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain
  2. 2 INIA-CSIC, Ministry of Science and Innovation, Carretera de la Coruña Km 7.5, E-28040 Madrid, Spain
  3. 3 Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Ciudad Universitaria, E-28040 Madrid, Spain
Revista:
Agronomy

ISSN: 2073-4395

Año de publicación: 2023

Volumen: 13

Número: 11

Páginas: 2780

Tipo: Artículo

DOI: 10.3390/AGRONOMY13112780 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Agronomy

Resumen

This article emphasizes the crucial importance of yeast Meyerozyma guilliermondii (Patent CECT13190) as a biological control agent (BCA) in eliciting defensive responses in vine plants, and is supported by comprehensive physiological, proteomic, and transcriptomic analyses. The results demonstrate that the BCA M. guilliermondii can induce enhanced defensive responses, as reflected in the regulation of key proteins. Notably, the upregulated expression of calmodulin and pathogenesis-related protein 10 (PR-10) are indicative of a complex interplay between calcium signalling, salicylic acid accumulation, and the elicitation of plant defence responses against pathogens. Furthermore, changes in microtubule dynamics and proteins related to protein synthesis and folding are observed, confirming the elicitation of defence responses. The correspondence between proteomic and transcriptomic analyses for genes codifying pathogenesis-related proteins, such as Vcgns1, VviTL1, and Vcchit1b, reinforces the empirical robustness of our findings. Collectively, our research explores the modulation of plant defences by the BCA, opening promising avenues for innovative agricultural strategies that enhance crop resilience and productivity.

Información de financiación

Financiadores

  • Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
    • RTA2015-0015-C02-02

Referencias bibliográficas

  • Gramaje, (2011), Plant Dis., 95, pp. 1040, 10.1094/PDIS-01-11-0025
  • Tello, (2019), Plant Dis., 103, pp. 2471, 10.1094/PDIS-01-19-0067-PDN
  • Morsy, (2020), Environ. Sci. Pollut. Res., 27, pp. 33872
  • Yang, Q., Zhang, X., Solairaj, D., Fu, Y., and Zhang, H. (2023). Molecular Response of Meyerozyma guilliermondii to Patulin: Transcriptomic-Based Analysis. J. Fungi, 9.
  • (2019), LWT, 113, pp. 108271, 10.1016/j.lwt.2019.108271
  • Arnold, (2003), Proc. Natl. Acad. Sci. USA, 100, pp. 15649, 10.1073/pnas.2533483100
  • Hoagland, (1950), Circ. Calif. Agric. Exp. Stn., 347, pp. 1
  • Baggiolini, (1952), Ann. L’institut Natl. Rech. Agron., 2, pp. 1
  • Sherman, (2022), Nucleic Acids Res., 50, pp. W216, 10.1093/nar/gkac194
  • Tseng, (2014), Biomaterials, 35, pp. 603
  • Romero, (2016), Front. Plant Sci., 7, pp. 1748, 10.3389/fpls.2016.01748
  • Romero, (2019), Postharvest Biol. Technol., 150, pp. 42, 10.1016/j.postharvbio.2018.12.011
  • Livak, (2001), Methods, 25, pp. 402, 10.1006/meth.2001.1262
  • El-Morsy, E.S.M., Elmalahy, Y.S., and Mousa, M. (2023). Biocontrol of Fusarium equiseti using chitosan nanoparticles combined with Trichoderma longibrachiatum and Penicillium polonicum. Fungal Biol. Biotechnol., 10.
  • Papon, (2013), Curr. Genet., 59, pp. 73, 10.1007/s00294-013-0391-0
  • Kthiri, Z., Jabeur, M.B., Chairi, F., López-Cristoffanini, C., López-Carbonell, M., Serret, M.D., Araus, J.L., Karmous, C., and Hamada, W. (2021). Exploring the potential of Meyerozyma guilliermondii on physiological performances and defense response against Fusarium crown rot on durum wheat. Pathogens, 10.
  • Saleem, (2021), Plant Physiol. Biochem., 168, pp. 381, 10.1016/j.plaphy.2021.10.011
  • (2005), Planta, 222, pp. 192, 10.1007/s00425-005-1514-8
  • Ankati, (2021), Microb. Pathog., 157, pp. 104961, 10.1016/j.micpath.2021.104961
  • Loake, (2007), Curr. Opin. Plant Biol., 10, pp. 466, 10.1016/j.pbi.2007.08.008
  • Edgar, (2006), Australas. Plant Pathol., 35, pp. 581, 10.1071/AP06060
  • Jacobsen, (2016), Biol. Control., 92, pp. 153, 10.1016/j.biocontrol.2015.10.006
  • Lahlali, R., Ezrari, S., Radouane, N., Kenfaoui, J., Esmaeel, Q., El Hamss, H., Belabess, Z., and Barka, E.A. (2022). Biological control of plant pathogens: A global perspective. Microorganisms, 10.
  • Patkar, R.N., and Naqvi, N.I. (2017). Fungal manipulation of hormone-regulated plant defense. PLoS Pathog., 13.
  • Kim, (2008), Mol. Plant-Microbe Interact., 21, pp. 605, 10.1094/MPMI-21-5-0605
  • Melgarejo, (1991), Sci. Total Environ., 107, pp. 159, 10.1016/0048-9697(91)90257-F
  • Munoz, (1994), Int. Biodeterior. Biodegrad., 34, pp. 169, 10.1016/0964-8305(94)90006-X
  • Pirovani, (2022), Front. Plant Sci., 14, pp. 1193873
  • Wanford, J.J., and Odendall, C. (2023). Ca2+-calmodulin signalling at the host-pathogen interface. Curr. Opin. Microbiol., 72.
  • Berger, (2007), J. Exp. Bot., 58, pp. 4019, 10.1093/jxb/erm298
  • Raffeiner, (2023), Trends Plant Sci., 28, pp. 698, 10.1016/j.tplants.2023.01.013
  • Tyagi, (2022), Appl. Microbiol. Biotechnol., 106, pp. 5945
  • Wang, J., Lian, N., Zhang, Y., Man, Y., Chen, L., Yang, H., Lin, J., and Jing, Y. (2022). The cytoskeleton in plant immunity: Dynamics, regulation, and function. Int. J. Mol. Sci., 23.
  • Li, S., Cao, P., Wang, C., Guo, J., Zang, Y., Wu, K., Ran, F., Liu, L., Wang, D., and Min, Y. (2021). Genome-wide analysis of the tubulin gene family in cassava and expression of family member FtsZ2-1 during various stress. Plants, 10.
  • Sazegari, (2020), Gene Rep., 21, pp. 100941, 10.1016/j.genrep.2020.100941
  • Sahu, (2022), Front. Plant Sci., 13, pp. 1042936, 10.3389/fpls.2022.1042936
  • Haider, M.S., Jaskani, M.J., and Fang, J. (2021). Biocontrol Agents and Secondary Metabolites, Woodhead Publishing.
  • Panina, (2007), J. Phytopathol., 155, pp. 475, 10.1111/j.1439-0434.2007.01260.x
  • (2007), Annu. Rev. Phytopathol., 45, pp. 101, 10.1146/annurev.phyto.45.062806.094325
  • Marathe, (2003), Mol. Cell, 11, pp. 284, 10.1016/S1097-2765(03)00072-8
  • Cobos, (2010), Proteome Sci., 8, pp. 46, 10.1186/1477-5956-8-46
  • Yadav, (2022), Front. Plant Sci., 13, pp. 817950, 10.3389/fpls.2022.817950
  • Leidhold, (2007), Ann. N. Y. Acad. Sci., 1113, pp. 72, 10.1196/annals.1391.011
  • Yang, (2011), Physiol. Mol. Plant Pathol., 75, pp. 90, 10.1016/j.pmpp.2010.11.002
  • Alvarez, (2022), Trends Plant Sci., 27, pp. 39, 10.1016/j.tplants.2021.07.009
  • Sharma, (2023), J. Exp. Bot., 74, pp. 4367, 10.1093/jxb/erad191
  • Morant, (2008), Phytochemistry, 69, pp. 1795, 10.1016/j.phytochem.2008.03.006
  • Madhupani, (2017), J. Plant Dis. Prot., 124, pp. 227, 10.1007/s41348-017-0086-8
  • de Jong, H., Reglinski, T., Elmer, P.A., Wurms, K., Vanneste, J.L., Guo, L.F., and Alavi, M. (2019). Integrated use of Aureobasidium pullulans strain CG163 and acibenzolar-S-methyl for management of bacterial canker in kiwifruit. Plants, 8.
  • Vaghela, (2022), Enzym. Microb. Technol., 159, pp. 110055, 10.1016/j.enzmictec.2022.110055
  • Vigers, (1992), Plant Sci., 83, pp. 155, 10.1016/0168-9452(92)90074-V
  • Liu, (2010), Plant Cell Rep., 29, pp. 419, 10.1007/s00299-010-0826-8
  • Grenier, (1999), Plant J., 19, pp. 473, 10.1046/j.1365-313X.1999.00551.x
  • Rebaque, (2021), Plant J., 106, pp. 601, 10.1111/tpj.15185