Baryon anticorrelations in PYTHIA

  1. Demazure, Noe
  2. González Sebastián, V.
  3. Llanes Estrada, Felipe José 1
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Revista:
Few-Body Systems

ISSN: 1432-5411

Año de publicación: 2023

Volumen: 64

Número: 3

Tipo: Artículo

DOI: 10.1007/S00601-023-01838-5 GOOGLE SCHOLAR lock_openDocta Complutense editor

Otras publicaciones en: Few-Body Systems

Resumen

We present a computational investigation of a problem of hadron collisions from recent years, that of baryon anticorrelations. This is an experimental dearth of baryons near other baryons in phase space, not seen upon examining numerical Monte Carlo simulations. We have addressed one of the best known Monte Carlo codes, PYTHIA, to see what baryon (anti)correlations it produces, where they are originated at the string-fragmentation level in the underlying Lund model, and what simple modifications could lead to better agreement with data. We propose two ad-hoc alterations of the fragmentation code, a “one-baryon” and an “always-baryon” policies that qualitatively reproduce the data behaviour, i.e anticorrelation, and suggest that lacking Pauli-principle induced corrections at the quark level could be the culprit behind the current disagreement between computations and experiment.

Información de financiación

Referencias bibliográficas

  • ŁK. Graczykowski et al., [ALICE]. Nucl. Phys. A 926, 205–212 (2014). https://doi.org/10.1016/j.nuclphysa.2014.03.004
  • J. Adam et al. [ALICE], Eur. Phys. J. C 77(8), 569 (2017) [erratum: Eur. Phys. J. C 79, 998 (2019)] https://doi.org/10.1140/epjc/s10052-017-5129-6
  • ŁK. Graczykowski, M.A. Janik, Phys. Rev. C 104, 054909 (2021). https://doi.org/10.1103/PhysRevC.104.054909
  • J. Adam et al., [STAR] Phys. Rev. C 101(1), 014916 (2020). https://doi.org/10.1103/PhysRevC.101.014916
  • G. Abbiendi et al. [OPAL], Eur. Phys. J. C 64 (2009), 609-625 https://doi.org/10.1140/epjc/s10052-009-1175-z
  • C. Bierlich, et al. “A comprehensive guide to the physics and usage of PYTHIA 8.3,” eprint arXiv:2203.11601 [hep-ph]
  • J. Greensite, Lect. Notes Phys. 821, 1–211 (2011). https://doi.org/10.1007/978-3-642-14382-3
  • R. Lednicky, Phys. Part. Nucl. 40, 307–352 (2009). https://doi.org/10.1134/S1063779609030034
  • S. Ferreres-Solé, T. Sjöstrand, Eur. Phys. J. C 78, 983 (2018). https://doi.org/10.1140/epjc/s10052-018-6459-8
  • B. Andersson, G. Gustafson, T. Sjostrand, Phys. Scripta 32, 574 (1985). https://doi.org/10.1088/0031-8949/32/6/003
  • N. Dowrick, J.E. Paton, S. Perantonis, J. Phys. G 13, 423 (1987). https://doi.org/10.1088/0305-4616/13/4/005
  • L. Zhou, S.M. Wang, D.Q. Fang, Y.G. Ma, Nucl. Sci. Tech. 33, 105 (2022). https://doi.org/10.1007/s41365-022-01091-1