Metal-based Nanoparticles in Cancer Therapy: Exploring Photodynamic Therapy and its Interplay with Regulated Cell Death Pathways (Pre-Proof)

  1. Pashootan, Parya
  2. Saadati, Fatemeh
  3. Fahimi, Hossein
  4. Rahmati, Marveh
  5. Strippoli, Raffaele
  6. Zarrabi, Ali
  7. Cordani, Marco
  8. Moosavi, Mohammad Amin
Revista:
International Journal of Pharmaceutics

ISSN: 0378-5173

Año de publicación: 2023

Páginas: 123622

Tipo: Artículo

DOI: 10.1016/J.IJPHARM.2023.123622 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: International Journal of Pharmaceutics

Resumen

Photodynamic therapy (PDT) represents a non-invasive treatment strategy currently utilized in the clinical management of selected cancers and infections. This technique is predicated on the administration of a photosensitizer (PS) and subsequent irradiation with light of specific wavelengths, thereby generating reactive oxygen species (ROS) within targeted cells. The cellular effects of PDT are dependent on both the localization of the PS and the severity of ROS challenge, potentially leading to the stimulation of various cell death modalities. For many years, the concept of regulated cell death (RCD) triggered by photodynamic reactions predominantly encompassed apoptosis, necrosis, and autophagy. However, in recent decades, further explorations have unveiled additional cell death modalities, such as necroptosis, ferroptosis, cuproptosis, pyroptosis, parthanatos, and immunogenic cell death (ICD), which helps to achieve tumor cell elimination. Recently, nanoparticles (NPs) have demonstrated substantial advantages over traditional PSs and become important components of PDT, due to their improved physicochemical properties, such as enhanced solubility and superior specificity for targeted cells. This review aims to summarize recent advancements in the applications of different metal-based NPs as PSs or delivery systems for optimized PDT in cancer treatment. Furthermore, it mechanistically highlights the contribution of RCD pathways during PDT with metal NPs and how these forms of cell death can improve specific PDT regimens in cancer therapy.

Información de financiación

Financiadores

  • Instituto Nacional de Ingeniería Genética y Biotecnología (NIGEB) Spain
    • (No.: 980301-I-728)
  • Ministerio de Ciencia e Innovación (MICINN) Spain
    • (RYC2021-031003-I)
  • Agencia Estatal de Investigación Spain
    • (MCIN/AEI/10.13039/501100011033)
  • Ministerio de Salud de Italia Italy
  • Unión Europea European Union
    • (UE/PRTR)

Referencias bibliográficas

  • . (!!! INVALID CITATION !!! (Abrahamse et al., 2017; Yan et al., 2020)).
  • Aaes, (2016), Cell Rep, 15, pp. 274, 10.1016/j.celrep.2016.03.037
  • Abrahamse, (2016), Biochem J, 473, pp. 347, 10.1042/BJ20150942
  • Abrahamse, (2017), Photomed Laser Surg, 35, pp. 581, 10.1089/pho.2017.4308
  • Aghajanzadeh, (2020), Drug Development and Industrial Pharmacy, 46, pp. 846, 10.1080/03639045.2020.1757698
  • Agostinis, (2011), CA Cancer J Clin, 61, pp. 250, 10.3322/caac.20114
  • Ali, (2002), Int J Oncol, 21, pp. 531
  • AlSalhi, (2020), Journal of King Saud University - Science, 32, pp. 1395, 10.1016/j.jksus.2019.11.033
  • Alzeibak, (2021), J Immunother Cancer, 9, 10.1136/jitc-2020-001926
  • Amaral, (2009), Trends in Molecular Medicine, 15, pp. 531, 10.1016/j.molmed.2009.09.005
  • Ashraf, (2020), Frontiers in Aging Neuroscience, 12, 10.3389/fnagi.2020.00196
  • Atiyeh, N., Anvarsadat, K., Shahriyar, A., & Siamak, J. (2023). Metal-Based Nanomaterials Photodynamic Action with a Focus on Au and Ag Nanomaterials. In S. Rahul, K. Aleksey, & A. Akbar (Eds.), Drug Formulation Design (pp. Ch. 3). IntechOpen. https://doi.org/10.5772/intechopen.109220
  • Aubrey, (2018), Cell Death & Differentiation, 25, pp. 104, 10.1038/cdd.2017.169
  • Bai, (2020), Journal of Applied Toxicology, 40, pp. 37, 10.1002/jat.3910
  • Barhoum, A., García-Betancourt, M. L., Jeevanandam, J., Hussien, E. A., Mekkawy, S. A., Mostafa, M., Omran, M. M., S. Abdalla, M., & Bechelany, M. (2022). Review on Natural, Incidental, Bioinspired, and Engineered Nanomaterials: History, Definitions, Classifications, Synthesis, Properties, Market, Toxicities, Risks, and Regulations. Nanomaterials, 12(2).
  • Barry, (2013), ACS Nano, 7, pp. 5654, 10.1021/nn403220e
  • Baskaran, (2018), Biomater Res, 22, pp. 25, 10.1186/s40824-018-0140-z
  • Bassik, (2004), Embo j, 23, pp. 1207, 10.1038/sj.emboj.7600104
  • Bell, (2016), Curr Alzheimer Res, 13, pp. 150, 10.2174/1567205013666151218145431
  • Berghe, (2010), Cell Death & Differentiation, 17, pp. 922, 10.1038/cdd.2009.184
  • Berghe, (2014), Nature Reviews Molecular Cell Biology, 15, pp. 135, 10.1038/nrm3737
  • Bharathiraja, (2017), Photodiagnosis and Photodynamic Therapy, 19, pp. 128, 10.1016/j.pdpdt.2017.04.005
  • Blázquez-Castro, (2014), Photochemical & Photobiological Sciences, 13, pp. 1235, 10.1039/c4pp00113c
  • Broekgaarden, (2015), Cancer Metastasis Rev, 34, pp. 643, 10.1007/s10555-015-9588-7
  • Brunelle, (2009), J Cell Sci, 122, pp. 437, 10.1242/jcs.031682
  • Burlec, (2023), Pharmaceuticals, 16, 10.3390/ph16101410
  • Buytaert, (2006), The FASEB Journal, 20, pp. 756-758, 10.1096/fj.05-4305fje
  • Buytaert, (2006), Autophagy, 2, pp. 238, 10.4161/auto.2730
  • Calixto, (2016), Molecules, 21, 10.3390/molecules21030342
  • Carbone, (2006), Biomaterials, 27, pp. 3221, 10.1016/j.biomaterials.2006.01.056
  • Chen, (2020), Biomaterials, 237, 10.1016/j.biomaterials.2020.119827
  • Chen, (2021), Nanoscale, 13, pp. 4855, 10.1039/D0NR08757B
  • Chen, (2008), Cell Death & Differentiation, 15, pp. 171, 10.1038/sj.cdd.4402233
  • Chen, (2019), Nanoscale, 11, pp. 12983, 10.1039/C9NR03114F
  • Chen, (2019), Cell Death & Disease, 10, pp. 772, 10.1038/s41419-019-2004-4
  • Cheng, (2008), Journal of the American Chemical Society, 130, pp. 10643, 10.1021/ja801631c
  • Cheng, (2021), Nanoscale, 13, pp. 10816, 10.1039/D1NR01645H
  • Chilakamarthi, (2017), The Chemical Record, 17, pp. 775-802, 10.1002/tcr.201600121
  • Cobine, (2022), Mol Cell, 82, pp. 1786, 10.1016/j.molcel.2022.05.001
  • Cordani, (2021), Antioxidants (Basel), 10
  • Cordani, (2019), Cellular and Molecular Life Sciences, 76, pp. 1215, 10.1007/s00018-018-2973-y
  • Cory, (2002), Nat Rev Cancer, 2, pp. 647, 10.1038/nrc883
  • Cotin, (2021), Nanoscale, 13, pp. 14552, 10.1039/D1NR03335B
  • Cui, (2021), Cell Communication and Signaling, 19, pp. 120, 10.1186/s12964-021-00799-8
  • Curcio, (2019), Magnetic Hyperthermia and Photodynamic Therapy. Theranostics, 9, pp. 1288
  • Dąbrowski, (2015), Photochem Photobiol Sci, 14, pp. 1765, 10.1039/c5pp00132c
  • Das, (2016), Human Reproduction Update, 22, pp. 588, 10.1093/humupd/dmw020
  • de Melo Gomes, (2023), Photochemical & Photobiological Sciences, 22, pp. 1341, 10.1007/s43630-023-00382-9
  • Debele, (2015), Int J Mol Sci, 16, pp. 22094, 10.3390/ijms160922094
  • Deng, (2020), Nano Letters, 20, pp. 1928, 10.1021/acs.nanolett.9b05210
  • Denton, (2019), Cell Death & Differentiation, 26, pp. 605, 10.1038/s41418-018-0252-y
  • Dixon, (2012), Cell, 149, pp. 1060, 10.1016/j.cell.2012.03.042
  • Dixon, (2019), Annual Review of Cancer Biology, 3, pp. 35, 10.1146/annurev-cancerbio-030518-055844
  • Donohoe, (2019), Biochim Biophys Acta Rev Cancer, 1872, 10.1016/j.bbcan.2019.07.003
  • Dos Santos, (2020), Photochem Photobiol, 96, pp. 658, 10.1111/php.13182
  • Dos Santos, (2020), Cell Death & Disease, 11, pp. 1070, 10.1038/s41419-020-03275-2
  • Duan, (2016), J Am Chem Soc, 138, pp. 16686, 10.1021/jacs.6b09538
  • Efimova, I., Catanzaro, E., Meeren, L. V. d., Turubanova, V. D., Hammad, H., Mishchenko, T. A., Vedunova, M. V., Fimognari, C., Bachert, C., Coppieters, F., Lefever, S., Skirtach, A. G., Krysko, O., & Krysko, D. V. (2020). Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. Journal for ImmunoTherapy of Cancer, 8(2), e001369.
  • Elmore, (2007), Toxicol Pathol, 35, pp. 495, 10.1080/01926230701320337
  • Espinosa, (2016), ACS Nano, 10, pp. 2436, 10.1021/acsnano.5b07249
  • Fabian, (2008), Archives of Toxicology, 82, pp. 151, 10.1007/s00204-007-0253-y
  • Fabris, (2001), Cancer Research, 61, pp. 7495
  • Fakhar-e-Alam, (2011), Laser Physics, 21, pp. 1978, 10.1134/S1054660X1119011X
  • Fakhar-e-Alam, (2012), Lasers in Medical Science, 27, pp. 607, 10.1007/s10103-011-0989-8
  • Falk-Mahapatra, (2020), Photochemistry and Photobiology, 96, pp. 550, 10.1111/php.13253
  • Feng, (2020), Particle and Fibre Toxicology, 17, pp. 53, 10.1186/s12989-020-00372-0
  • Ferino, (2020), Journal of Photochemistry and Photobiology B: Biology, 202, 10.1016/j.jphotobiol.2019.111672
  • Fernandes, (2019), Organic & Biomolecular Chemistry, 17, pp. 2579, 10.1039/C8OB02902D
  • Festjens, (2006), Bioenergetics, 1757, pp. 1371, 10.1016/j.bbabio.2006.06.014
  • Fontana, (2020), Cancer, 1873
  • Fribley, (2009), Methods Mol Biol, 559, pp. 191, 10.1007/978-1-60327-017-5_14
  • Friedmann Angeli, (2019), Nature Reviews Cancer, 19, pp. 405, 10.1038/s41568-019-0149-1
  • Fulda, (2006), Oncogene, 25, pp. 4798, 10.1038/sj.onc.1209608
  • Galluzzi, (2015), Cell Death & Differentiation, 22, pp. 58, 10.1038/cdd.2014.137
  • Galluzzi, (2016), Cellular and Molecular Life Sciences, 73, pp. 2405, 10.1007/s00018-016-2209-y
  • Galluzzi, (2018), Cell Death & Differentiation, 25, pp. 486, 10.1038/s41418-017-0012-4
  • García Calavia, (2018), Photochem Photobiol Sci, 17, pp. 1534, 10.1039/c8pp00271a
  • García-Garrido, (2021), Pharmaceutics, 13, 10.3390/pharmaceutics13122067
  • Garg, (2017), Immunological Reviews, 280, pp. 126-148, 10.1111/imr.12574
  • Garg, (2012), Embo j, 31, pp. 1062, 10.1038/emboj.2011.497
  • George, (2022), Frontiers in Chemistry, 10, 10.3389/fchem.2022.964674
  • Ghaemi, (2016), ACS Applied Materials & Interfaces, 8, pp. 3123, 10.1021/acsami.5b10056
  • Ghavami, (2009), Journal of medical genetics, 46, pp. 497, 10.1136/jmg.2009.066944
  • Glick, (2010), The Journal of Pathology, 221, 10.1002/path.2697
  • Goel, (2018), Adv Mater, 30, 10.1002/adma.201704367
  • Greijer, (2004), J Clin Pathol, 57, pp. 1009, 10.1136/jcp.2003.015032
  • Haddad, (2002), Cytokines, Cellular & Molecular Therapy, 7, pp. 1, 10.1080/13684730216401
  • Hak, (2023), ACS Applied Bio Materials, 6, pp. 349, 10.1021/acsabm.2c00891
  • Han, (2021), Biomedicines, 9, 10.3390/biomedicines9030305
  • Han, (2020), Biomaterials, 257, 10.1016/j.biomaterials.2020.120228
  • He, (2009), Annual Review of Genetics, 43, pp. 67, 10.1146/annurev-genet-102808-114910
  • Hetz, (2011), Physiol Rev, 91, pp. 1219, 10.1152/physrev.00001.2011
  • Hitomi, (2004), J Cell Biol, 165, pp. 347, 10.1083/jcb.200310015
  • Hong, (2019), ACS Biomaterials Science & Engineering, 5, pp. 5209, 10.1021/acsbiomaterials.9b01339
  • Hou, (2018), Int J Cancer, 143, pp. 3050, 10.1002/ijc.31717
  • Hou, (2015), ACS Nano, 9, pp. 2584, 10.1021/nn506107c
  • Hougaard, (2015), Reproductive Toxicology, 56, pp. 118, 10.1016/j.reprotox.2015.05.015
  • Hsieh, (2003), Journal of Cellular Physiology, 194, pp. 363-375, 10.1002/jcp.10273
  • Hu, (2013), Journal of Materials Chemistry B, 1, pp. 5003, 10.1039/c3tb20849d
  • Hua, (2021), Frontiers in Oncology, 11, 10.3389/fonc.2021.738323
  • Imanparast, (2018), Photodiagnosis and Photodynamic Therapy, 23, pp. 295, 10.1016/j.pdpdt.2018.07.011
  • Huis In 't Veld, R. V., Heuts, J., Ma, S., Cruz, L. J., Ossendorp, F. A., & Jager, M. J. (2023). Current Challenges and Opportunities of Photodynamic Therapy against Cancer. Pharmaceutics, 15(2).
  • Jalili, (2004), Clin Cancer Res, 10, pp. 4498, 10.1158/1078-0432.CCR-04-0367
  • Jang, (2011), ACS Nano, 5, pp. 1086, 10.1021/nn102722z
  • Jeevanandam, (2018), Beilstein Journal of Nanotechnology, 9, pp. 1050, 10.3762/bjnano.9.98
  • Jin, (2021), Int J Nanomedicine, 16, pp. 4693, 10.2147/IJN.S314506
  • Juarranz, (2020), Cancers, 12, 10.3390/cancers12113341
  • Jung, (2021), Pharmaceutics, 13, pp. 1788, 10.3390/pharmaceutics13111788
  • Kamuhabwa, (2001), Photochem Photobiol, 74, pp. 126, 10.1562/0031-8655(2001)074<0126:CPIBHI>2.0.CO;2
  • Kessel, (2012), J Natl Compr Canc Netw, 10 Suppl 2(0 2)
  • Kessel, (2019), Photochem Photobiol, 95, pp. 119, 10.1111/php.12952
  • Kessel, (2019), Photochemistry and Photobiology, 95, pp. 1239-1242, 10.1111/php.13103
  • Kessel, (2018), Photochemistry and Photobiology, 94, pp. 213-218, 10.1111/php.12857
  • Kessel, (2020), Autophagy, 16, pp. 2098, 10.1080/15548627.2020.1783823
  • Kessel, (2006), Lasers Surg Med, 38, pp. 482, 10.1002/lsm.20334
  • Kessel, (2020), Photochem Photobiol, 96, pp. 652, 10.1111/php.13150
  • Khafaji, (2019), Biophys Rev, 11, pp. 335, 10.1007/s12551-019-00532-3
  • Khlyustova, (2020), Advances, 1, pp. 1193
  • Kim, (2020), Photochemistry and Photobiology, 96, pp. 280-294, 10.1111/php.13219
  • Kishwar, (2014), Laser Physics Letters, 11, 10.1088/1612-2011/11/11/115606
  • Klionsky, (2003), Developmental cell, 5, pp. 539, 10.1016/S1534-5807(03)00296-X
  • Klionsky, (2000), Science, 290, pp. 1717, 10.1126/science.290.5497.1717
  • Kolosnjaj-Tabi, (2017), Pharmacological research, 126, pp. 123, 10.1016/j.phrs.2017.07.010
  • Kopp, (2019), Nature Structural & Molecular Biology, 26, pp. 1053, 10.1038/s41594-019-0324-9
  • Korbelik, (2011), Cancer Immunol Immunother, 60, pp. 1431, 10.1007/s00262-011-1047-x
  • Kou, (2017), Oncotarget, 8, pp. 81591, 10.18632/oncotarget.20189
  • Krajczewski, (2019), Photodiagnosis Photodyn Ther, 26, pp. 162, 10.1016/j.pdpdt.2019.03.016
  • Kroemer, (2013), Annual Review of Immunology, 31, pp. 51, 10.1146/annurev-immunol-032712-100008
  • Kroemer, (2005), Nature Reviews Cancer, 5, pp. 886, 10.1038/nrc1738
  • Krysko, (2012), Nat Rev Cancer, 12, pp. 860, 10.1038/nrc3380
  • Kujoth, (2005), Science, 309, pp. 481, 10.1126/science.1112125
  • Kundu, (2008), Annual Review of Pathology: Mechanisms of Disease, 3, pp. 427, 10.1146/annurev.pathmechdis.2.010506.091842
  • Kushibiki, (2013), Journal of Healthcare Engineering, 4, 10.1260/2040-2295.4.1.87
  • Kwiatkowski, (2018), Biomedicine & Pharmacotherapy, 106, pp. 1098, 10.1016/j.biopha.2018.07.049
  • Lafuente-Gómez, (2021), Cancers (Basel), 13, 10.3390/cancers13164095
  • Lagopati, (2010), Journal of Photochemistry and Photobiology A: Chemistry, 214, pp. 215, 10.1016/j.jphotochem.2010.06.031
  • Lan, (2019), Advanced Healthcare Materials, 8, pp. 1900132, 10.1002/adhm.201900132
  • Larsen, (2017), Febs j, 284, pp. 1160, 10.1111/febs.13970
  • Lee, (2020), Molecules, 25, 10.3390/molecules25215195
  • Leibowitz, (2010), Cancer Biol Ther, 9, pp. 417, 10.4161/cbt.9.6.11392
  • Li, (2018), Chemical Society Reviews, 47, pp. 1174, 10.1039/C7CS00594F
  • Li, (2021), Biomacromolecules, 22, pp. 1167, 10.1021/acs.biomac.0c01679
  • Li, (2020), Nature Reviews Clinical Oncology, 17, pp. 657, 10.1038/s41571-020-0410-2
  • Li, (2013), Nanoscale Research Letters, 8, pp. 96, 10.1186/1556-276X-8-96
  • Li, (2017), Photodiagnosis Photodyn Ther, 19, pp. 5, 10.1016/j.pdpdt.2017.04.001
  • Li, (2019), Nat Commun, 10, pp. 3349, 10.1038/s41467-019-11269-8
  • Li, (2022), Coordination Chemistry Reviews, 471, 10.1016/j.ccr.2022.214754
  • Liang, (2018), Biomaterials, 177, pp. 149, 10.1016/j.biomaterials.2018.05.051
  • Lifshits, (2020), Chemical Science, 11, pp. 11740, 10.1039/D0SC03875J
  • Lin, (2013), ACS Nano, 7, pp. 5320, 10.1021/nn4011686
  • Linder, (2019), Biology (Basel), 8
  • Liu, (2021), J Nanobiotechnology, 19, pp. 160, 10.1186/s12951-021-00903-7
  • Locksley, (2001), Cell, 104, pp. 487, 10.1016/S0092-8674(01)00237-9
  • Long, (2022), NPG Asia Materials, 14, pp. 71, 10.1038/s41427-022-00422-3
  • Lorenzo, (2020), Journal for ImmunoTherapy of Cancer, 8, pp. e000337, 10.1136/jitc-2019-000337
  • Lucas, F. d. F. (2020). Nanomaterials for Enhanced Photodynamic Therapy. In I. Natalia Mayumi, B. Hilde Harb, B. Kate Cristina, & D. Lucas Danilo (Eds.), Photodynamic Therapy (pp. Ch. 12). IntechOpen. https://doi.org/10.5772/intechopen.94255
  • Lucky, (2015), Chemical Reviews, 115, pp. 1990, 10.1021/cr5004198
  • Luo, (2022), Journal of Inorganic Biochemistry, 235, 10.1016/j.jinorgbio.2022.111940
  • Luo, (1997), Photochem Photobiol, 66, pp. 479, 10.1111/j.1751-1097.1997.tb03176.x
  • Luo, (2015), Oncol Lett, 9, pp. 551, 10.3892/ol.2014.2720
  • Luo, (2014), Trends Pharmacol Sci, 35, pp. 556, 10.1016/j.tips.2014.09.008
  • Ma, (2021), Life, 11
  • Madala, (2015), Journal of Clinical & Experimental Pathology, 05
  • Mahboob, (2021), Photodiagnosis and Photodynamic Therapy, 33, 10.1016/j.pdpdt.2020.102148
  • Maiuri, (2007), Nature Reviews Molecular Cell Biology, 8, pp. 741, 10.1038/nrm2239
  • Martins, (2021), Frontiers in Oncology, 10, 10.3389/fonc.2020.610472
  • Mascaraque, (2019), Int J Mol Sci, 20, 10.3390/ijms20051229
  • Mashayekhi, (2019), J Porphyr Phthalocyanines, 23, pp. 1229, 10.1142/S1088424619300180
  • Mathew, (2009), Cell, 137, pp. 1062, 10.1016/j.cell.2009.03.048
  • Mfouo-Tynga, (2021), Photodiagnosis and Photodynamic Therapy, 34, 10.1016/j.pdpdt.2020.102091
  • Mihaylova, (2011), Nature Cell Biology, 13, pp. 1016, 10.1038/ncb2329
  • Miki, (2014), J Toxicol Sci, 39, pp. 821, 10.2131/jts.39.821
  • Miki, (2015), Lasers in Medical Science, 30, pp. 1739, 10.1007/s10103-015-1783-9
  • Mishchenko, (2021), Trends in Cancer, 7, pp. 484, 10.1016/j.trecan.2021.01.013
  • Mishchenko, (2022), Cell Death & Disease, 13, pp. 455, 10.1038/s41419-022-04851-4
  • Mizushima, (2005), Cell Death & Differentiation, 12, pp. 1535, 10.1038/sj.cdd.4401728
  • Mizushima, (2008), Nature, 451, pp. 1069, 10.1038/nature06639
  • Mohammadalipour, (2020), Journal of Cellular Physiology, 235, pp. 8246, 10.1002/jcp.29479
  • Mohammadinejad, (2019), Autophagy, 15, pp. 4, 10.1080/15548627.2018.1509171
  • Mokwena, (2018), Photodiagnosis and Photodynamic Therapy, 22, pp. 147, 10.1016/j.pdpdt.2018.03.006
  • Monro, (2019), Chem Rev, 119, pp. 797, 10.1021/acs.chemrev.8b00211
  • Montaseri, (2021), Pharmaceutics, 13, 10.3390/pharmaceutics13030296
  • Moosavi, (2016), Scientific Reports, 6, pp. 34413, 10.1038/srep34413
  • Moserova, (2012), PLoS One, 7, pp. e32972, 10.1371/journal.pone.0032972
  • Natesan, (2017), Mater Sci Eng C Mater Biol Appl, 77, pp. 935, 10.1016/j.msec.2017.03.179
  • Negara, (2020), Int J Reprod Biomed, 18, pp. 439
  • Niculescu, (2021), Applied Sciences, 11, pp. 3626, 10.3390/app11083626
  • Novohradsky, (2020), Inorg Chem Front, 7, pp. 4150, 10.1039/D0QI00991A
  • Nowak-Stepniowska, A., Pergoł, P., & Padzik-Graczyk, A. (2013). [Photodynamic method of cancer diagnosis and therapy--mechanisms and applications]. Postepy Biochem, 59(1), 53-63. (Metoda fotodynamiczna diagnostyki i leczenia nowotworów--mechanizmy i zastosowania.)
  • Ochsner, (1997), Journal of Photochemistry and Photobiology B: Biology, 39, pp. 1, 10.1016/S1011-1344(96)07428-3
  • Ohsumi, (2014), Cell Research, 24, pp. 9, 10.1038/cr.2013.169
  • Oleinick, (2002), Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology, 1, pp. 1, 10.1039/b108586g
  • Oliveira, (2011), Free Radical Biology and Medicine, 51, pp. 824, 10.1016/j.freeradbiomed.2011.05.023
  • Ou, (2021), iScience, 24, 10.1016/j.isci.2020.101982
  • Pakos-Zebrucka, (2016), EMBO Rep, 17, pp. 1374, 10.15252/embr.201642195
  • Park, (2018), Science, 6, pp. 79
  • Piette, (2015), Photochemical & Photobiological Sciences, 14, pp. 1510, 10.1039/c4pp00465e
  • Pihán, (2017), Cell Death & Differentiation, 24, pp. 1478, 10.1038/cdd.2017.82
  • Puthalakath, (2007), Cell, 129, pp. 1337, 10.1016/j.cell.2007.04.027
  • Qi, (2022), CCS Chemistry, pp. 1
  • Ramesh, (2009), Cell Cycle, 8, pp. 11, 10.4161/cc.8.1.7291
  • Ray, (1996), Virology, 217, pp. 384, 10.1006/viro.1996.0128
  • Razan, (2021), Journal for ImmunoTherapy of Cancer, 9, pp. e001926, 10.1136/jitc-2020-001926
  • Read, (2021), Biology (Basel), 10
  • Reiners, (2002), Cell Death Differ, 9, pp. 934, 10.1038/sj.cdd.4401048
  • Rimoldi, (2016), Journal of Materials Science: Materials in Medicine, 27, pp. 159
  • Ron, (2007), Nature Reviews Molecular Cell Biology, 8, pp. 519, 10.1038/nrm2199
  • Sadjadpour, (2016), Biotechnol Appl Biochem, 63, pp. 113, 10.1002/bab.1344
  • Sai, (2021), Experimental & Molecular Medicine, 53, pp. 495, 10.1038/s12276-021-00599-7
  • Sajid, (2022), Current Opinion in Environmental Science & Health, 25, 10.1016/j.coesh.2021.100319
  • Sarbadhikary, (2021), Theranostics, 11, pp. 9054, 10.7150/thno.62479
  • Sargazi, S., Er, S., Sacide Gelen, S., Rahdar, A., Bilal, M., Arshad, R., Ajalli, N., Farhan Ali Khan, M., & Pandey, S. (2022). Application of titanium dioxide nanoparticles in photothermal and photodynamic therapy of cancer: An updated and comprehensive review. Journal of Drug Delivery Science and Technology, 75, 103605.
  • Scherz-Shouval, (2007), Trends in Cell Biology, 17, pp. 422, 10.1016/j.tcb.2007.07.009
  • Scheuner, (2001), Mol Cell, 7, pp. 1165, 10.1016/S1097-2765(01)00265-9
  • Schröder, (2005), Annual Review of Biochemistry, 74, pp. 739, 10.1146/annurev.biochem.73.011303.074134
  • Seo, (2019), Cell Death & Disease, 10, pp. 187, 10.1038/s41419-019-1360-4
  • Shah, (2019), Photodiagnosis and Photodynamic Therapy, 27, pp. 173, 10.1016/j.pdpdt.2019.05.019
  • Shang, (2017), Journal of Photochemistry and Photobiology B: Biology, 177, pp. 112, 10.1016/j.jphotobiol.2017.10.016
  • Shang, (2021), Molecules, 26, 10.3390/molecules26216532
  • Shen, (2011), Autophagy, 7, pp. 457, 10.4161/auto.7.5.14226
  • Shi, (2013), Biomaterials, 34, pp. 9666, 10.1016/j.biomaterials.2013.08.049
  • Shishido, (2021), Annals of Surgical Oncology, 28, pp. 3996, 10.1245/s10434-020-09334-4
  • Simon, (2000), Apoptosis, 5, pp. 415, 10.1023/A:1009616228304
  • Song, (2016), Analyst, 141, pp. 3126, 10.1039/C6AN00773B
  • Songca, (2023), International Journal of Molecular Sciences, 24, 10.3390/ijms241310875
  • Stockwell, (2020), Trends Cell Biol, 30, pp. 478, 10.1016/j.tcb.2020.02.009
  • Stuchinskaya, (2011), Photochemical & Photobiological Sciences, 10, pp. 822, 10.1039/c1pp05014a
  • Sun, (2018), Molecules, 23, 10.3390/molecules23071704
  • Syntichaki, (2002), EMBO Rep, 3, pp. 604, 10.1093/embo-reports/kvf138
  • Szegezdi, (2006), EMBO Rep, 7, pp. 880, 10.1038/sj.embor.7400779
  • Szegezdi, (2009), American Journal of Physiology-Cell Physiology, 296, 10.1152/ajpcell.00612.2008
  • Tampa, (2019), Oncol Lett, 17, pp. 4085
  • Tan, (2022), Front Oncol, 12, 10.3389/fonc.2022.863107
  • Tang, (2019), Cell Research, 29, pp. 347, 10.1038/s41422-019-0164-5
  • Tansi, (2021), Effect of Matrix-Modulating Enzymes on The Cellular Uptake of Magnetic Nanoparticles and on Magnetic Hyperthermia Treatment of Pancreatic Cancer Models In Vivo. Nanomaterials (Basel), 11
  • Tansi, (2021), Int J Hyperthermia, 38, pp. 743, 10.1080/02656736.2021.1912412
  • Tavakkoli Yaraki, (2022), Nano-Micro Letters, 14, pp. 123, 10.1007/s40820-022-00856-y
  • Tsvetkov, (2022), Science, 375, pp. 1254, 10.1126/science.abf0529
  • Turubanova, (2019), J Immunother Cancer, 7, pp. 350, 10.1186/s40425-019-0826-3
  • v. Tappeiner, H. (1909). Die photodynamische Erscheinung (Sensibilisierung durch fluoreszierende Stoffe). Ergebnisse der Physiologie, 8(1), 698-741.
  • Van der Meeren, (2020), iScience, 23, 10.1016/j.isci.2020.101816
  • Vankayala, (2018), Advanced Materials, 30, pp. 1706320, 10.1002/adma.201706320
  • Vigueras, (2021), Frontiers, 8, pp. 4696
  • Vinita, N. M., Devan, U., Durgadevi, S., Anitha, S., Prabhu, D., Rajamanikandan, S., Govarthanan, M., Yuvaraj, A., Biruntha, M., Antony Joseph Velanganni, A., Jeyakanthan, J., Prakash, P. A., Mohamed Jaabir, M. S., & Kumar, P. (2023). Triphenylphosphonium conjugated gold nanotriangles impact Pi3K/AKT pathway in breast cancer cells: a photodynamic therapy approach. Scientific Reports, 13(1), 2230.
  • Wang, (2020), Advanced Functional Materials, 30, pp. 2005400, 10.1002/adfm.202005400
  • Wang, (2021), Cancers (Basel), 13, 10.3390/cancers13122992
  • Wang, (2023), World J Clin Oncol, 14, pp. 324, 10.5306/wjco.v14.i9.324
  • Wang, (2023), Asian J Pharm Sci, 18
  • Wang, (2009), Annu Rev Genet, 43, pp. 95, 10.1146/annurev-genet-102108-134850
  • Wculek, (2020), Nature Reviews Immunology, 20, pp. 7, 10.1038/s41577-019-0210-z
  • Wei, (2023), Chemical Communications, 59, 10.1039/D3CC01355C
  • Weishaupt, (1976), Cancer Res, 36, pp. 2326
  • White, (2009), Clinical Cancer Research, 15, pp. 5308, 10.1158/1078-0432.CCR-07-5023
  • Wieder, (2006), Photochem Photobiol Sci, 5, pp. 727, 10.1039/b602830f
  • Wong, (2011), Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1812, pp. 1490, 10.1016/j.bbadis.2011.07.005
  • Wu, (2020), J Mater Chem B, 8, pp. 2128, 10.1039/C9TB02646K
  • Wyld, (2001), Br J Cancer, 84, pp. 1384, 10.1054/bjoc.2001.1795
  • Wyllie, (2010), Mol Neurobiol, 42, pp. 4, 10.1007/s12035-010-8125-5
  • Xie, (2023), Molecular Cancer, 22, pp. 46, 10.1186/s12943-023-01732-y
  • Xu, (2022), Advanced Materials, 34, pp. 2204733, 10.1002/adma.202204733
  • Yan, (2020), Theranostics, 10, pp. 7287, 10.7150/thno.46288
  • Yang, (2023), Front Pharmacol, 14, pp. 1229297, 10.3389/fphar.2023.1229297
  • Yang, (2009), pp. 1
  • Yang, (2016), Trends Cell Biol, 26, pp. 165, 10.1016/j.tcb.2015.10.014
  • Yezhelyev, (2009), Nanomedicine (Lond), 4, pp. 83, 10.2217/17435889.4.1.83
  • Yi, (2020), Photodiagnosis Photodyn Ther, 30, 10.1016/j.pdpdt.2020.101694
  • Youssef, (2018), Photodiagnosis and Photodynamic Therapy, 22, pp. 115, 10.1016/j.pdpdt.2018.03.005
  • Youssef, (2019), J Clin Med, 8, 10.3390/jcm8122205
  • Yurt, (2018), Chemical Biology & Drug Design, 91, pp. 789-796, 10.1111/cbdd.13144
  • Zeng, (2023), Bioactive Materials, 25, pp. 580, 10.1016/j.bioactmat.2022.07.016
  • Zeng, (2022), Theranostics, 12, pp. 817, 10.7150/thno.67932
  • Zhang, (2008), Journal of Biomedical Nanotechnology, 4, pp. 432, 10.1166/jbn.2008.006
  • Zhang, (2011), Biomaterials, 32, pp. 1906, 10.1016/j.biomaterials.2010.11.027
  • Zhang, C., Yan, L., Gu, Z., & Zhao, Y. (2019). Strategies based on metal-based nanoparticles for hypoxic-tumor radiotherapy. Chemical Science, 10(29), 6932-6943. Retrieved 2019/08//, from
  • Zhang, (2022), Frontiers in Oncology, 12
  • Zhang, (2018), Acta Pharm Sin B, 8, pp. 137, 10.1016/j.apsb.2017.09.003
  • Zhang, (2021), Materials & Design, 203, 10.1016/j.matdes.2021.109611
  • Zhang, (2020), Biomaterials, 252, 10.1016/j.biomaterials.2020.120106
  • Zhang, (2022), Frontiers in Bioengineering and Biotechnology, 10, 10.3389/fbioe.2022.1001572
  • Zhao, (2021), Chemical Society Reviews, 50, pp. 4185, 10.1039/D0CS00173B
  • Zhao, (2012), Nanoscale, 4, pp. 7712, 10.1039/c2nr32196c
  • Zhu, (2019), Theranostics, 9, pp. 3293, 10.7150/thno.32867
  • Ziental, (2020), Nanomaterials, 10, pp. 387, 10.3390/nano10020387
  • Zou, (2019), Nature Communications, 10, pp. 1617, 10.1038/s41467-019-09277-9