Tipología y disposiciones del organismo en la evo-devouna aproximación metafísica

  1. Villegas, Cristina 1
  2. Triviño, Vanessa 2
  1. 1 Centro de Filosofia das Ciências da Universidade de Lisboa, Portugal
  2. 2 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Revista:
Artefactos

ISSN: 1989-3612

Año de publicación: 2023

Título del ejemplar: Philosophy of Organismal Biology: From Ontogeny to Ecology and Evolution

Volumen: 12

Número: 1

Páginas: 79-102

Tipo: Artículo

DOI: 10.14201/ART202312179102 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Artefactos

Resumen

En este artículo, abordamos el problema de cómo se pueden entender las tendencias variacionales que se atribuyen a los rasgos homólogos en evo-devo. Tras resaltar que las teorías actuales sobre la homología no dan suficiente cuenta de por qué, de hecho, los rasgos varían, proponemos una caracterización de los mismos como tipos naturales disposicionales. Para ello, recurrimos a las herramientas que ofrece la metafísica respecto a la caracterización de las propiedades disposicionales. Teniendo en cuenta este marco, consideramos que solo atribuyendo a los rasgos (entendidos como tipos naturales) la disposición de variar, puede darse cuenta del poder causal y explicativo de los mismos en evo-devo. Este caso de estudio ilustra, además, un tipo de interacción entre metafísica y biología al que denominamos “metafísica desde la biología”, en que las exigencias específicas de una realidad tan compleja como la evolución demanda unas nociones metafísicas que van más allá de las consideradas en la literatura.

Referencias bibliográficas

  • Amundson, R. (2005). The changing role of the embryo in evolutionary thought: roots of evo-devo. Cambridge: Cambridge University Press.
  • Armstrong, D. (1969). Dispositions are Causes. Analysis, 30, 23-26.
  • Assis, L., Brigandt, I. (2009). Homology: homeostatic property cluster kinds in systematics and evolution. Evolutionary Biology, 36(2), 248-255.
  • Austin, C. (2017). Evo-devo: a science of dispositions. European Journal for Philosophy of Science, 7(2), 373-389.
  • Austin, C., Nuño de la Rosa, L. (2021). Dispositional properties in evo-devo. En Laura Nuño de la Rosa y Gerd B. Müller (eds.) Evolutionary developmental biology: A reference guide (pp. 469-481). Cham: Springer
  • Baedke, J. (2012). Causal explanation beyond the gene: manipulation and causality in epigenetics. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia, 27(2),153-174.
  • Bapteste, E., Dupré, J. (2013). Towards a processual microbial ontology. Biology and Philosophy, 28, 379-404.
  • Bird, A. (2007). Nature’s Metaphysics: Laws and Properties. Oxford: Oxford University Press.
  • Bouchard, F., Rosenberg, A. (2004). Fitness, Probability and the Principles of Natural Selection. British Journal of Philosophy of Science, 55(4), 693-712.
  • Boyd, R. (1991). Realism, anti-foundationalism and the enthusiasm for natural kinds. Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, 61(1/2), 127-148.
  • Brandon, R. (1996). Does biology have laws? The experimental evidence. Philosophy of Science, 64, S444-S457.
  • Brigandt, I. (2007). Typology now: homology and developmental constraints explain evolvability. Biology & Philosophy, 22(5), 709-725.
  • Brigandt, I. (2015). Evolutionary Developmental Biology and the Limits of Philosophical Accounts of Mechanistic Explanation. En P. Braillard y C. Malaterre (eds.), Explanation in Biology: An Enquiry into the Diversity of Explanatory Patterns in the Life Sciences (pp. 135-173). Cham: Springer.
  • Brigandt, I., Villegas, C. , Love, A., Nuño de la Rosa, L. (2023). Evolvability as a Disposition: Philosophical Distinctions, Scientific Implications. En T. Hansen, D. Houle, M. Pavlicev y C. Pélabon (eds.), Evolvability. A unifying concept in evolutionary biology? (pp. 55-72). Cambridge, Massachusetts: MIT Press.
  • Calcott, B. (2009). Lineage explanations: explaining how biological mechanisms change. The British Journal for the Philosophy of Science, 60, 51-78.
  • Caponi, G. (2012). Réquiem por el centauro: aproximación epistemológica a la Biología Evolucionaria del Desarrollo. México DF: Instituto Vicente Lombardo.
  • Caponi, G. (2014). Leyes sin causa y causas sin ley en la explicación biológica. Bogotá: Universidad Nacional de Colombia.
  • Cartwright, N. (1989). Nature’s Capacities and their Measurement. Oxford: Oxford University Press.
  • Casanueva López, M., Vergara Silva, F. (2019). Teoría de construcción de nicho “síntesis evolutiva extendida” y filosofía de la ciencia: discusiones pendientes. En La biología evolutiva contemporánea: ¿Una revolución más en la ciencia? México DF: Centro de Investigaciones Interdisciplinarias en Ciencias y Humanidades, UNAM.
  • Cummins, R. (1975). Functional Analysis. Journal of Philosophy, 72, 741-765.
  • DesAutels, L. (2015). Toward a propensity interpretation of stochastic mechanism for the life sciences. Synthese, 192(9), 2921-2953.
  • DiFrisco, J., Love, A., Wagner, G. (2020). Character identity mechanisms: a conceptual model for comparative-mechanistic biology. Biology & Philosophy, 35(4), 1-32.
  • Dupré, J. (2012). Processes of Life: Essays in the Philosophy of Biology. Oxford: Oxford University Press.
  • Etxeberria, A., Umerez, J. (2016). Organismo y organización en la biología teórica: ¿vuelta al organicismo? Ludus vitalis, 14(26), 3-38.
  • Fetzer, J. (1974). A single case propensity theory of explanation. Synthese, 28(2), 171-198.
  • Griffiths, P. (2008). Philosophy of biology. En Zalta, Edward (ed.), The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/entries/biology-philosophy/
  • Guay, A., Pradeu, T. (2017). Right out of the box: How to situate metaphysics of science in relation to other metaphysical approaches. Synthese, 187(7), 1-20.
  • Hall, B. (1999). Evolutionary Developmental Biology, second edition. Cham: Springer.
  • Huneman, P.(2010). Topological explanations and robustness in biological sciences. Synthese, 177(2), 213-245.
  • Huneman, P., Walsh, D. (eds.). (2017). Challenging the modern synthesis: Adaptation, development, and inheritance. Oxford: Oxford University Press.
  • Hüttemann, A., Kaiser, M.(2018). Potentiality in biology. En K. Engelhard y M. Quante (eds.), Handbook of Potentiality (pp. 401-228). Dordrecht: Springer.
  • Johnston, M. (1992). How to Speak of the Colors. Philosophical Studies,68, 221-263.
  • Laland, K., Sterelny, K., Odling-Smee, J., Hoppitt, W., Uller, T. (2011). Cause and effect in biology revisited: is Mayr’s proximate-ultimate dichotomy still useful? Science, 334(6062), 1512-1516.
  • Laland, K., Matthews, B., Feldman, M. (2016). An introduction to niche construction theory. Evolutionary ecology, 30(2), 191-202.
  • Lange, A., Nemeschkal, H., Müller, G. (2018). A threshold model for polydactyly. Progress in Biophysics and Molecular Biology, 137, 1-11.
  • Levins, R., Lewontin, R. (1985). The Dialectical Biologist. Cambridge, Massachusetts: Harvard University Press.
  • Lewens, T. (2009). What is wrong with typological thinking? Philosophy of Science, 76(3), 355-371.
  • Love, A. (2009). Typology reconfigured: from the metaphysics of essentialism to the epistemology of representation. Acta biotheoretica, 57(1), 51-75.
  • Mayr, E. (1963). Animal Species and Evolution. Cambridge, Massachusetts: Harvard University Press.
  • Mayr, E. (1982). The growth of biological thought. Cambridge: Cambridge University Press.
  • Mellor, D. H. (1974). In Defence of Dispositions. The Philosophical Review,83, 157-181.
  • Mills, S., Beatty, J. (1979). The Propensity Interpretation of Fitness. Philosophy of Science, 46, 263-286.
  • Millstein, R. (2006). Natural Selection as a Population-Level Causal Process. British Journal for the Philosophy of Science, 57(4).
  • Molnar, G. (2003). Powers: A Study in Metaphysics. Oxford: Oxford University Press.
  • Mumford, S. (1998). Dispositions. Oxford: Oxford University Press.
  • Mumford, S. (2004). Laws in Nature. New York: Routledge.
  • Mumford, S., Anjum, R. (2011). Getting Causes from Powers. Oxford: Oxford University Press.
  • Müller, G. (2003). Homology: the evolution of morphological organization. En G. Müller y S. Newman (eds.), Origination of organismal form: Beyond the gene in developmental and evolutionary biology (pp. 51-70). Cambridge, Massachusetts: The MIT Press.
  • Müller, G. (2007). Six memos for evo-devo. En M. Laubichler y J. Maienschein (eds.), From embryology to evo-devo: A history of developmental evolution (pp. 499-524). Cambridge, Massachusetts: MIT Press.
  • Newman, S. (2006). The developmental-genetic toolkit and the molecular homology-analogy paradox. Biological Theory, 1(1), 12.
  • Nicholson, D. (2014). The return of the organism as a fundamental explanatory concept in biology. Philosophy Compass, 9(5), 347-359.
  • Nicholson, D., Dupré, J. (2018). Everything Flows: Towards a Processual Philosophy of Biology. Oxford: Oxford University Press.
  • Nuño de la Rosa, L. (2013). El problema de la función en evo-devo. Contrastes. Revista Internacional de Filosofía: Suplemento, 18, 187-199.
  • Nuño de la Rosa, L. (2018). Capturing processes: The interplay of modelling strategies and conceptual understanding in developmental biology. En D. Nicholson y J. Dupré (eds.), Everything Flows. Oxford: Oxford University Press.
  • Nuño de la Rosa, L., Villegas, C. (2022). Chances and Propensities in Evo-Devo. The British Journal for the Philosophy of Science, 73(2), 509-533.
  • Pence, C., Ramsey, G. (2013). A new foundation for the propensity interpretation of fitness. The British Journal for the Philosophy of Science, 64, 851-881.
  • Pigliucci, M. (2001). Phenotypic plasticity: beyond nature and nurture. Baltimore, Maryland: JHU Press.
  • Pigliucci, M., Müller, G. (2010). Evolution–the extended synthesis. Cambridge, Massachusetts: MIT Press.
  • Potochnik, A. (2013). Biological explanation. En K. Kampourakis (ed.), The Philosophy of Biology: A Companion for Educators (pp. 49-65). Dordrecht: Springer.
  • Rasskin-Gutman, D. (2016). De la modularidad a la complejidad: jerarquía de partes, jerarquía de procesos y los agentes causales en la Evo-Devo. Cuicuilco, 23(65), 165-181.
  • Reydon, T. (2008). Species in three and four dimensions. Synthese, 164(2), 161-184.
  • Rieppel, O. (2005). Modules, kinds, and homology. Journal of Experimental Zoology: Part B Molecular and Developmental Evolution,304, 18-27.
  • Seibt, J. (2016). Process philosophy. En Zalta, E. (ed.), The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/archives/win2016/entries/process-philosophy/.
  • Sober, E. (1984). Fact, Fiction, and Fitness: A Reply to Rosenberg. The Journal of Philosophy, 81, 372-383.
  • Sober, E. (2020). Fitness and the Twins. Philosophy, Theory, and Practice in Biology, 12(001).
  • Soto, C. (2017). ¿Qué es la metafísica de la ciencia? Discusiones Filosóficas, 18(31), 87-105.
  • Stamos, D. (2003). The species problem: biological species, ontology and the metaphysics of biology. U.K.: Lexington Books.
  • Suárez, J., Triviño, V. (2019). A metaphysical approach to holobiont individuality: Holobionts as emergent individuals. Quaderns de filosofia,6(1), 59-76.
  • Suárez, J., Triviño, V. (2020). What is a Hologenomic Adaptation? Emergent Individuality and Inter-Identity in Multispecies Systems. Frontiers in Psychology, 11(187), 1-15.
  • Triviño, V. (2019). Questions at the Intersection between Metaphysics and Biology: Towards a Metaphysics of Biology. Tesis doctoral. Universidad de Murcia.
  • Triviño, V. (2022). Towards a characterization of metaphysics of biology: metaphysics for and metaphysics in biology. Synthese, 200(408), 1-21.
  • Triviño, V., Cerezo, M. (2015). The metaphysical equivalence between 3D and 4D theories of species. Revista Portuguesa de Filosofía, 71, 781-806.
  • Triviño, V., Nuño de la Rosa, L. (2016). A causal dispositional account of fitness. History and Philosophy of the Life Sciences, 38, 1-18.
  • Villegas, C. (2020). Variational Probabilities and Developmental Propensities: a Philosophical Study of Chance in Evolutionary Variation. Tesis doctoral. Universidad Complutense de Madrid.
  • Wagner, G. (2007). The developmental genetics of homology. Nature Reviews Genetics, 8(6), 473-479.
  • Wagner, G. (2014). Homology, genes, and evolutionary innovation. Princeton, New Jersey: Princeton University Press.
  • Wagner, G., Altenberg, L. (1996). Perspective: complex adaptations and the evolution of evolvability. Evolution, 50(3), 967-976.
  • Walsh, D., Ariew, A., Matthen, M. (2017). Four pillars of statisticalism. Philosophy, Theory, and Practice in Biology, 9(1).
  • Waters, K. (2017). No general structure. En M. Slater y Z. Yudell (eds), Metaphysics in the philosophy of science: new essays. Oxford: Oxford UniversityPress.
  • Weber, M. (2001). Determinism, realism and probability in evolutionary theory. Proceedings of the Philosophy of Science Association,83, 213-224.
  • Wilson, J. (2002). Causal Powers, Forces, and Superdupervenience. Grazer Philosophische Studien, 63, 53-78.
  • Wilson, R., Barker, M., Brigandt, I. (2007). When traditional essentialism fails: biological natural kinds. Philosophical Topics, 35(1/2), 189-215.
  • Winsor, M. (2006). The creation of the essentialism story: an exercise in metahistory. History and Philosophy of the Life Sciences, 28, 149-174.