Inmunologíamucho por aprender

  1. Isabel Cortegano Jimeno 1
  1. 1 Instituto de Salud Carlos III
    info

    Instituto de Salud Carlos III

    Madrid, España

    ROR https://ror.org/00ca2c886

Revista:
RIECS: Revista de Investigación y Educación en Ciencias de la Salud

ISSN: 2530-2787

Año de publicación: 2023

Volumen: 8

Número: 2

Páginas: 10-16

Tipo: Artículo

Otras publicaciones en: RIECS: Revista de Investigación y Educación en Ciencias de la Salud

Resumen

El término inmunología, derivado del latín “immunitas”, aparece en algunos escritos griegos refiriéndose a aquellos individuos libres de padecer una enfermedad debido a que previamente ya la habían sufrido. Desde estas primeras observaciones hasta la fecha las investigaciones en esta área del conocimiento no han dejado de aportar nuevos hallazgos, siempre con el objetivo de conseguir entender la enfermedad para finalmente tratarla o prevenirla. En este momento nuevos conceptos como la inmunidad entrenada, la vacunología inversa o las células CAR-T junto con los avances tecnológicos se abren paso para continuar avanzando en el conocimiento del sistema inmunitario.

Referencias bibliográficas

  • Abul K Abbas et al. Inmunología celular y molecular ISBN: 9788413822068. ELSEVIER 2022.
  • JR Reguero et al. Biología y Patología del Sistema Inmunitario. ISBN: 9788491104209. Panamericana 2022.
  • Palis J and Yoder MC. Yolk-sac hematopoiesis: the first blood cells of mouse and man. Exp. Hematol, 2001; 29(8): 927-936.
  • Nishikawa S. Hemangioblast: an in vitro phantom. Willey Interdiscip Rev Dev Biol. 2012; 1(4): 603-608.
  • Palis J, Robertson S, Kennady M, Wall C, Keller G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development. 1999; 126(22): 5073-5084.
  • Godin IE, Garcia-Porrero JA, Coutinho A, Dieterlen-Lièvre F, Marcos MA. Para-aortic splanchnopleura from early mouse embryos contains B1a cell progenitors. Nature 1993 ; 364:67-70.
  • Tober J, Yzaguirre AD, Piwarzyk E, Speck NA. Distinct temoral requirements for Runx1 in hematopoietic progenitors and stem cells. Developmente, 2013; 140(18): 3765-3776.
  • Ivanovs A, Rybtsov S, Welch L, Anderson RA, Turner ML, Medvinsky A. Highly potent human hematopoietc stem cells first emerge in the intraembryonic aorta-gpnad-mesonephros region. J Exp Med. 2011; 208(12): 2417-2427.
  • LeFrancais E, Ortiz-Muñoz G, Caudrillier A, Mallavia B, Liu F, Sayh DM, Thornton EE, Headlye MB, David T, Coughlin SR, Krummel MF, Leavitt AD, Passegué E, Looney MR. Nature, 2017; 544(7648): 105-109.
  • Scechter R, London A, Schwartz M. Orchestrated leykocyte recruitment to iimune-privileged siter: absolute barriers versus educational gates. Nat. Rev. Immunol. 2013; 13: 206-218.
  • Wang Y, Chen D, Chao Huang DX, Xing R, He D, Xu H Early developing B cells undergo negative selection by nervous system-specific antigens in the meninges. Immunity. 2021; 54: 2784-2794.
  • Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG, Leung BP, Lelios I, Heppner FL, Kipnis J, Merkler D, Greter M, Becher B. Hight-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging and disease. Immunity; 2018; 48(2): 380-395.
  • Brioschi S, Wang WL, Peng V, Wang M, Shchukina I, et al. Heterogenity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science, 2021; 373 408.
  • T. R. Kollmann, B. Kampmann, S. K. Mazmanian, A. Marchant and O. Levy: Perinatal life and early infancy is a period of enhanced susceptibility to pathogens due to the immaturity of immune responses (Protecting the Newborn and Young Infant from Infectious Diseases: Lessons from Immune Ontogeny. Immunity 2017; 46(3), 350-363.
  • PrabhuDas, M. et al. Challenges in infant immunity: implications for responses to infection and vaccines. Nat. Immunol. 2011; 12:189–194.
  • Levy, O. Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat. Rev. Immunol, 2007; 7:379–390.
  • Kollmann, T.R. et al. Innate immune function by Toll-like receptors: distinct responses in newborns and the elderly. Immunity, 2012; 37:771–783.
  • Broxmeyer HE, Liu Y, Kapur R, Orschell CM, Aljoufi A, Ropa JP, Trinh T, Burns S, Capitano ML. Fate of Hematopoiesis during Aging. What Do We Really know, and what are its Implications? Stem Cell Reviews and Report, 2020; 16(6): 1020-1048.
  • Marcello Pinti, Victor Appay, Judith Campisi, Daniela Frasca, Tamas Fülöp, Delphine Sauce, Anis Larbi, Birgit Weinberger, and Andrea Cossarizza. Aging of the immune system – focus on inflammation and vaccination. Eur J Immunol, 2016, 46(10): 2286–2301.
  • Netea MG, Quintin J, van der Meer JWM. Trained immunity: a memory for innate host defense. Cell Host Microbe 2011; 9:355–361.
  • De Andrés B, Prado C, Palacios B, Alía M, Jagtap S, Serrano N, Cortegano I, Marcos MA, Gaspar ML. Dynamics of the splenic innate-like CD19+CD454Rlo cell population from adult mice in homeostatic and activated conditions. J Immunol, 2012; 189(1): 2300-2308.
  • Loupenova M, Livada AC, Morrell CN. Platelet and megakaryocyte roles in innate and adaptative immunity. Circ. Res., 222; 130(2): 288-308.
  • Zhu A, Real F, Capron C, Rosenberg AR, Silvin A, Dunsmore G, Zhu J, Cottoignies-Callamarte A, Massé JM, Moine P, Bessis S, Godement M, Geri G, Chiche JD et al. Infection of lung megakaryocytes and platelets by SARS-CoV-2 anticpate fatal COVID-19. Cell Mol Life Sci, 2022; 79(7): 365.
  • Serrano N, Cortegano I, Ruiz C, Alía M, de Andrés B, Rejas MT, Marcos MAR, Gaspar ML. Hepatology, 2012; 56(5): 1934-1945.
  • Cortegano I, Serrano N, Ruiz C, Rodríguez M, Prado C, Alía M, Hidalgo A, Cano E, de Andrés B, Gaspar ML. Haematologica, 2019; 104(9): 1853-1865.
  • Dib PRB, Quirino-Teixeira AC, Merij LB, Pinheiro MBM, Rozini SV, Andrade FB, Hottz ED. Innate immune receptors in platelets and platelet-leukocyte interactions. J Leukoc Biol, 2020; 108(4): 1157-1182.
  • Wang S, Sun J, Dastgheyb RM, Li Z. Tumor-derived extracelular vesicles modulate innate immune responses to affect fumor progression. Front Immunol, 2022; 13: 1045624.
  • Burgaleda-Alonso C. Visión actual de la terapia con células CAR-T. RIECS, 2022.7.1. ISSN: 2530-2787.
  • Kochenderfer JN, Rosenberg SA. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat Rev Clin Oncol, 2013; 10:267–76.
  • Sadelain M, Brentjens R, Riviere I. The basic principles of chimeric antigen receptor design. Cancer Discov 2013; 3:388–98.
  • Carter PJ, Raipal A. Designing antibodies as therapeutics. Cell, 2022; 185(15): 2789-2805.
  • Wu, H., Pfarr, D.S., Johnson, S., Brewah, Y.A., Woods, R.M., Patel, N.K., White, W.I., Young, J.F., and Kiener, P.A. Development of motavizumab, an ultra-potent antibody for the prevention of respiratory syncytial virus infection in the upper and lower respiratory tract. J. Mol. Biol, 2007; 368: 652–665.
  • Velasquez MP, Bonifant CL, Gottschalk S. Redirecting T cells to haematological malignancies with bispecific antibodies. Blood, 2018; 131:30-38.
  • Martínez-Sabadell A, Morancho B, Rius Ruiz I, Román Alonso M, et al. The target antigen determines the mechanism of acquired resistance to T-cell based therapies. Cell Reports, 2022; 41:11430.
  • Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines-a new era in vaccinology. Nat Rev Drug Discov, 2018: 17(4): 261-279.
  • De Gregorio E, Rappuoli R. From empiricism to rational design: A personal perspective of the evoluiton of vaccine development. Nat Rev Immunol, 2014; 14(7): 505-14.
  • Loomis RJ, Johnson PR. Emerging vaccine technologies. Vaccines, 2015; 3(2): 429-47.
  • Finco O, Rappuoli R. Designing vaccines for the twenty-first century society. Front Immunol, 2014; 5(12): 1-6.