A methodological framework for estimating ambient PM2.5 particulate matter concentrations in the UK

  1. Galán-Madruga, David
  2. Broomandi, Parya
  3. Satyanaga, Alfrendo
  4. Jahanbakhshi, Ali
  5. Bagheri, Mehdi
  6. Fathian, Aram
  7. Sarvestan, Rasoul
  8. Cárdenas-Escudero, J.
  9. Cáceres, J.O.
  10. Kumar, Prashant
  11. Kim, Jong Ryeol
Revista:
Journal of Environmental Sciences

ISSN: 1001-0742

Año de publicación: 2023

Tipo: Artículo

DOI: 10.1016/J.JES.2023.11.019 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of Environmental Sciences

Objetivos de desarrollo sostenible

Resumen

Scientific evidence sustains PM2.5 particles' inhalation may generate harmful impacts on human beings' health; therefore, their monitoring in ambient air is of paramount relevance in terms of public health. Due to the limited number of fixed stations within the air quality monitoring networks, development of methodological frameworks to model ambient air PM2.5 particles is primordial to providing additional information on PM2.5 exposure and its trends. In this sense, this work aims to offer a global easily-applicable tool to estimate ambient air PM2.5 as a function of meteorological conditions using a multivariate analysis. Daily PM2.5 data measured by 84 fixed monitoring stations and meteorological data from ERA5 (ECMWF Reanalysis v5) reanalysis daily based data between 2000 and 2021 across the United Kingdom were attended to develop the suggested approach. Data from January 2017 to December 2020 were employed to build a mathematical expression that related the dependent variable (PM2.5) to predictor ones (sea-level pressure, planetary boundary layer height, temperature, precipitation, wind direction and speed), while 2021 data tested the model. Evaluation indicators evidenced a good performance of model (maximum values of RMSE, MAE and MAPE: 1.80 µg/m3, 3.24 µg/m3, and 20.63%, respectively), compiling the current legislation's requirements for modelling ambient air PM2.5 concentrations. A retrospective analysis of meteorological features allowed estimating ambient air PM2.5 concentrations from 2000 to 2021. The highest PM2.5 concentrations relapsed in the Mid- and Southlands, while Northlands sustained the lowest concentrations.

Referencias bibliográficas

  • Annesi-Maesano, (2007), Eur. Respir. J., 29, pp. 428, 10.1183/09031936.00129506
  • Barman, (2020), J. King Saud Univ. Comp. Info. Sci., 34, pp. 2938
  • Barry, (2010)
  • Bi, (2019), Remote Sens. Environ., 221, pp. 665, 10.1016/j.rse.2018.12.002
  • Broomandi, (2021), Sustainability, 13, 10.3390/su13042201
  • Buchanan, (2002), Atmos. Environ., 36, pp. 5343, 10.1016/S1352-2310(02)00579-4
  • Chen, (2019), Atmos. Environ., 202, pp. 180, 10.1016/j.atmosenv.2019.01.027
  • Chu, (2016), Atmosphere (Basel), 7
  • COMEAP, 2010. The mortality effects of long-term exposure to particulate air pollution in the United Kingdom.
  • Cortina-Januchs, (2015), Atmos. Pollut. Res., 6, pp. 626, 10.5094/APR.2015.071
  • Crumeyrolle, (2014), Atmos. Chem. Phys., 14, pp. 2139, 10.5194/acp-14-2139-2014
  • Dai, (2022), Int. J. Environ. Res. Public Health, 19, pp. 6292, 10.3390/ijerph19106292
  • (2015)
  • Directive 2008/50/EC of the European Parliament and of the Council on 21 May 2008 on ambient air quality and cleaner air for Europe. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0050&from=ES (accessed Dec 9, 2021)
  • Doreswamy, (2020), Procedia Comput. Sci., 171, pp. 2057, 10.1016/j.procs.2020.04.221
  • Duncan, (2014), Atmos. Environ., 94, pp. 647, 10.1016/j.atmosenv.2014.05.061
  • (2014), EEA Report No 5/2014
  • ERA5, 2020. ERA 5 global climate reanalysis [WWW Document].
  • (2012), EURACHEM /CITAC Guide CG
  • Fenech, (2019), Atmos. Environ., 213, pp. 699, 10.1016/j.atmosenv.2019.06.030
  • Galán-Madruga, (2022), Int. J. Environ. Sci. Technol., 20, pp. 7083, 10.1007/s13762-022-04464-6
  • Galán-Madruga, (2022), J. Env. Sci., 111, pp. 164, 10.1016/j.jes.2021.03.005
  • Gehrig, (2003), Atmos. Environ., 37, pp. 2571, 10.1016/S1352-2310(03)00221-8
  • Gehring, (2015), Lancet. Respir. Med., 3, pp. 933, 10.1016/S2213-2600(15)00426-9
  • Geng, (2018), Environ. Int., 121, pp. 550, 10.1016/j.envint.2018.09.051
  • Geng, (2020), Environ. Res. Lett., 15, pp. 34056, 10.1088/1748-9326/ab76df
  • Gowers, A.M., Miller, B.G., Stedman, J.R., 2014. Estimating local mortality burdens associated with particulate air pollution © Crown copyright 2014, licenced under the Open Government Licence (OGL).
  • Gu, (2021), Science, 374, pp. 758, 10.1126/science.abf8623
  • Guevara-Luna, (2018), Asian J. Atmos. Environ., 12, pp. 165, 10.5572/ajae.2018.12.2.165
  • Harrison, (2012), Atmos. Environ., 46, pp. 115, 10.1016/j.atmosenv.2011.10.028
  • Heal, (2012), Chem Soc Rev. 7, 41, pp. 6606, 10.1039/c2cs35076a
  • Hellsten, (2008), Environ. Pollut., 154, pp. 370, 10.1016/j.envpol.2008.02.017
  • Huang, (2018), PLoS One, 13
  • Jiang, (2018), Air Qual. Atmos. Heal., 11, pp. 23, 10.1007/s11869-017-0514-8
  • Jonson, (2020), Atmospheric Chem. Phys., 20, pp. 11399, 10.5194/acp-20-11399-2020
  • Karunasingha, (2022), Inf. Sci., 585, pp. 609, 10.1016/j.ins.2021.11.036
  • Kelly, (2023), City Environ. Interact., 18, 10.1016/j.cacint.2023.100100
  • Kottek, (2006), Meteorol. Zeitschrift, 15, pp. 259, 10.1127/0941-2948/2006/0130
  • Krishna, (2019), Aerosol Air Qual. Res., 19, pp. 25, 10.4209/aaqr.2017.12.0568
  • Kumar, (2011), Atmos. Pollut. Res., 2, pp. 436, 10.5094/APR.2011.050
  • Kumar, (2020), Heliyon, 6, pp. e05618, 10.1016/j.heliyon.2020.e05618
  • Lelieveld, (2015), Nature, 525, pp. 367, 10.1038/nature15371
  • Lim, (2012), Lancet, 380, pp. 2224, 10.1016/S0140-6736(12)61766-8
  • Lin, (2015), Remote Sens. Environ, 156, pp. 117, 10.1016/j.rse.2014.09.015
  • Liu, (2007), J. Air Waste Manag. Assoc., 57, pp. 1360, 10.3155/1047-3289.57.11.1360
  • Ma, (2014), Environ. Sci. Technol., 48, pp. 7436, 10.1021/es5009399
  • Marais, (2021), J. Geophys. Res. Atmos., 126, 10.1029/2021JD035237
  • Masood, (2020), Procedia Comput. Sci., 167, pp. 2101, 10.1016/j.procs.2020.03.258
  • Nabavi, (2018), Atmos. Pollut. Res., 10, pp. 889, 10.1016/j.apr.2018.12.017
  • ONS, 2020. Office for National Statistics (ONS).
  • Peng, (2022), Chemosphere, 308, 10.1016/j.chemosphere.2022.136353
  • Philip, (2017), Environ. Res. Lett., 12, 10.1088/1748-9326/aa65a4
  • Pozzer, (2017), Atmospheric Chem. Phys., 17, pp. 12813, 10.5194/acp-17-12813-2017
  • QGIS, 2022. QGIS geographic information system (Version 3.22.3) open-source geospatial foundation project. https://www.qgis.org/en/site/forusers/download.html.
  • Ramsey, (2014), Atmos. Environ., 86, pp. 58, 10.1016/j.atmosenv.2013.12.006
  • Richmond, B., Misra, A., Brown, P., Karagianni, E., Murrells, T., Pang, Y., 2020. UK informative inventory report (1990 to 2018). Available: https://ukair.defra.gov.uk/assets/documents/reports/cat07/2003131327_GB_IIR_2020_v1.0.pdf [Accessed 11-04- 2022].
  • Schneider dos Santos, (2020), medRxiv
  • Shin, (2020), GIScience Remote Sens, 57, pp. 174, 10.1080/15481603.2019.1703288
  • Vieno, (2016), Atmos. Chem. Phys., 16, pp. 265, 10.5194/acp-16-265-2016
  • Vieno, (2014), Atmospheric Chem. Phys., 14, pp. 8435, 10.5194/acp-14-8435-2014
  • Wang, (2020), Atmos. Environ., 241, pp. 10, 10.1016/j.atmosenv.2020.117771
  • Wei, (2019), Remote Sens. Environ., 231, 10.1016/j.rse.2019.111221
  • Wongwatcharapaiboon, (2020), Futur. Cities Environ., 6, 10.5334/fce.79
  • Xiao, (2018), Environ. Sci. Technol., 52, pp. 13260, 10.1021/acs.est.8b02917
  • Xiao, (2017), Remote Sens. Environ., 199, pp. 437, 10.1016/j.rse.2017.07.023
  • Xu, (2020), PLoS One, 15, 10.1371/journal.pone.0240430
  • Yang, (2018), Procedia Comput. Sci., 131, pp. 825, 10.1016/j.procs.2018.04.271
  • Yazdi, (2020), Remote Sens., 12, pp. 914, 10.3390/rs12060914
  • Zeydan, (2019), Atmos. Pollut. Res., 10, pp. 1565, 10.1016/j.apr.2019.05.005
  • Zhang, (2015), Sci. Rep., 5, pp. 14884, 10.1038/srep14884
  • Zhao, (2018), PLoS One, 13
  • Zhong, (2021), Natl. Sci. Rev., 8, pp. nwaa307, 10.1093/nsr/nwaa307
  • Zhou, (2007), J. Environ. Sci. (China), 19, pp. 432, 10.1016/S1001-0742(07)60072-2