Evaluation of Bacillus amyloliquefaciens as a biocontrol agent against oak decline disease in Quercus trees
- GÓMEZ-GARAY, Aranzazu 1
- MANZANERA, José A. 2
- del CAMPO , Raquel 1
- PINTOS, Beatriz 1
- 1 Research Group FiVe-A, Plant Physiology Unit, Faculty of Biological Sciences, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
- 2 Research Group FiVe-A, College of Forestry and Natural Environment, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
ISSN: 2171-5068, 2171-9845
Year of publication: 2023
Volume: 32
Issue: 3
Type: Article
More publications in: Forest systems
Abstract
Aim of study: This study aimed to investigate the biocontrol potential of Bacillus amyloliquefaciens against Phytophthora cinnamomi infection in Quercus suber (cork oak). Both in vitro and in planta experiments were conducted to assess the effectiveness of B. amyloliquefaciens as a biocontrol agent. Area of study: The microorganism strains, B. amyloliquefaciens and P. cinnamomi, as well as the embryogenic lines of Q. suber used, have a Spanish origin. Material and methods: In vitro experiments involved evaluating the inhibitory effects of B. amyloliquefaciens on P. cinnamomi growth through dual-inoculated agar plates. In planta, dual inoculation tests were performed by co-inoculating plantlets with both P. cinnamomi and B. amyloliquefaciens. Physiological parameters, such as photosynthetic activity, chlorophyll content, and oxidative stress markers, were measured. All experiments were conducted under controlled conditions. Main results: In vitro experiments revealed the inhibitory effects of B. amyloliquefaciens on P. cinnamomi growth. Infected plantlets displayed symptoms of root infection. Dual inoculation tests resulted in plant survival against P. cinnamomi infection. Analysis of physiological parameters indicated variations among treatments and clones, highlighting the distinct response of Q. suber plantlets to the pathogen and underscoring the importance of genetic variability for disease management. Research highlights: This study provides insights into the potential of a strain of B. amyloliquefaciens as a biocontrol agent against P. cinnamomi infection in cork oak. Further investigations are warranted to elucidate the underlying mechanisms of susceptibility and resistance in different clones of Q. suber.
Bibliographic References
- Camisón A, Martín MA, Sánchez-Bel P, Flors V, Alcaide F, Morcuende D, et al., 2019. Hormone and secondary metabolite profiling in chestnut during susceptible and resistant interactions with Phytophthora cinnamomi. J Plant Physiol 241: 153030. https://doi.org/10.1016/j.jplph.2019.153030
- de Andrade Lourenço D, Branco I, Choupina A, 2022. A systematic review about biological control of phytopathogenic Phytophthora cinnamomi. Molecular Biology Reports. https://doi.org/10.1007/s11033-022-07547-2
- De Dios Avila N, Ríos Velasco C, Luna Esquivel G, Cambero Campos OJ, Cambero Ayón CB, Estrada-Virgen MO, 2020. Identification and antagonic activity in vitro isolation of bacteria against fungi of agricultural important. Revista Bio Ciencias 7: e803.
- Elias FE, 2015. Estudio de parámetros fisiológicos en la interacción Capsicum annuum L. y Phytophthora capsici L. Doctoral dissertation, Univ. Autónoma de Ciudad Juárez, Mexico.
- EPPO, 2004. Diagnostic protocols for regulated pests. Bull OEPP/EPPO 34: 201-207. https://doi.org/10.1111/j.1365-2338.2004.00720.x
- Ezziyyani M, Sánchez CP, Requena ME, Rubio L, Candela ME, 2004. Biocontrol por Streptomyces rochei -Ziyani-, de la podredumbre del pimiento (Capsicum annuum L.) causada por Phytophthora capsici. Anales de Biología 10.
- García JJ, 2016. Micropropagación de Quercus suber L. y resistencia/tolerancia in vitro al patógeno Phytophthora cinnamomi Rands. Fases iniciales de la micropropagación de Q. ilex L. Doctoral dissertation, Universidad de Huelva.
- García-Martín G, González-Benito ME, Manzanera JA, 2001. Quercus suber L. somatic embryo germination and plant conversion: pretreatments and germination conditions. In Vitro Cell Dev Biol Plant 37(2): 190-198. https://doi.org/10.1007/s11627-001-0033-y
- Gomez-Garay A, Manzanera JA, Pintos B, 2014. Embryogenesis in oak species. A review. Forest Syst 23(2): 191-198. https://doi.org/10.5424/fs/2014232-05829
- González R, 2019. Control biológico en Quercus ilex, Q. suber y Castanea sativa ante Phytophthora cinnamomi mediante sílice y Bacillus amyloliquefaciens. Bachelor's thesis.
- Kalogeropoulou E, Aliferis KA, Tjamos SE, Vloutoglou I, Paplomatas EJ, 2022. Combined transcriptomic and metabolomic analysis reveals insights into resistance of Arabidopsis bam3 mutant against the phytopathogenic fungus Fusarium oxysporum. Plants 11(24): 3457. https://doi.org/10.3390/plants11243457
- Ley-López N, Basilio Heredia J, San Martín-Hernández C, Ibarra-Rodríguez JR, Angulo-Escalante MÁ, García-Estrada RS, 2022. Biosíntesis inducida de fengicina y surfactina en una cepa de Bacillus amyloliquefaciens con actividad oomiceticida sobre zoosporas de Phytophthora capsica. Revista Argentina de Microbiología S0325754122000190. https://doi.org/10.1016/j.ram.2022.03.002
- Liu D, Li K, Hu J, Wang W, Liu X, Gao Z, 2019. Biocontrol and action mechanism of Bacillus amyloliquefaciens and Bacillus subtilis in soybean phytophthora blight. Int J Mol Sci 20(12): 2908. https://doi.org/10.3390/ijms20122908
- Liu YH, Song YH, Ruan YL, 2022. Sugar conundrum in plant-pathogen interactions: roles of invertase and sugar transporters depend on pathosystems. J Exp Bot 73(7): 1910-1925. https://doi.org/10.1093/jxb/erab562
- López-Hidalgo C, Meijón M, Lamelas L, Valledor L, 2021. The rainbow protocol: A sequential method for quantifying pigments, sugars, free amino acids, phenolics, flavonoids and MDA from a small amount of sample. Plant Cell Environ 44: 1977-1986. https://doi.org/10.1111/pce.14007
- Mauri PV, Manzanera JA, 2011. Somatic embryogenesis of holm oak (Quercus ilex L.): ethylene production and polyamine content. Acta Physiologiae Plantarum 33: 717-723. https://doi.org/10.1007/s11738-010-0596-5
- Méndez-Bravo A, Cortazar-Murillo EM, Guevara-Avendaño E, Ceballos-Luna O, Rodríguez-Haas B, Kiel-Martínez AL, et al., 2018. Plant growth-promoting rhizobacteria associated with avocado display antagonistic activity against Phytophthora cinnamomi through volatile emissions. PLOS ONE 13(3): e0194665. https://doi.org/10.1371/journal.pone.0194665
- Monteoliva MI, Bustos DA, Luna CM, 2019. Abordajes fisiológicos para el estudio del estrés abiótico en plantas. Disertaciones y protocolos. Ediciones INTA.
- Morcillo MA, 2021. Aplicación de la embriogénesis somática y el "priming" para mejorar la tolerancia a Phytophthora cinnamomi en Quercus ilex L. Doctoral dissertation, Universitat de València.
- Morkunas I, Ratajczak L, 2014. The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiologiae Plantarum 36: 1607-1619. https://doi.org/10.1007/s11738-014-1559-z
- Navarro RM, Ariza D, Porras C, Jorge I, Jorrín J, 2009. Evaluación de la resistencia aparente de individuos de encina a Phytophthora cinnamomi Rands. Bol San Veg Plagas 35(1): 89-97.
- Pintos B; Manzanera JA, Bueno MA, 2010. Oak somatic and gametic embryos maturation is affected by charcoal and specific aminoacids mixture. Ann For Sci 67(2): 205. https://doi.org/10.1051/forest/2009098
- San-Eufrasio B, Castillejo MA, Labella-Ortega M, Ruiz-Gómez FJ, Navarro-Cerrillo RM, Tienda-Parrilla M, et al., 2021. Effect and response of Quercus ilex subsp. Ballota [Desf.] Samp. plantlets from three contrasting Andalusian populations to individual and combined Phytophthora cinnamomi and drought stresses. Front Plant Sci 12: 722802. https://doi.org/10.3389/fpls.2021.722802
- Silva M, Rosado T, Teixeira D, Candeias A, Caldeira AT, 2017. Green mitigation strategy for cultural heritage: Bacterial potential for biocide production. Environ Sci Pollut Res 24(5): 4871-4881. https://doi.org/10.1007/s11356-016-8175-y
- Sommer HE, Brown CL, Kormanik PP, 1975. Differentiation of plantlets in longleaf pine (Pinus palustris Mill.) tissue cultured in vitro. Botanical Gazette 136(2): 196-200. https://doi.org/10.1086/336802
- Tapias R, Fernández M, Moreira AC, Sánchez E, Cravador A, 2006. Posibilidades de la variabilidad genética de encinas y alcornoques en la conservación y recuperación de bosques amenazados por la "seca". Boletín informativo CIDEU: 45-51.
- Testillano PS, Gómez-Garay A, Pintos B, Risueño MC, 2018. Somatic embryogenesis of Quercus suber L. from immature zygotic embryos. Methods Mol Biol 1815: 247-256. https://doi.org/10.1007/978-1-4939-8594-4_16
- Tuset JJ, Cots F, Hinarejos C, Mira JL, 2001. Suspensiones de zoosporas de Phytophthora cinnamomi que causan la" seca" en cinco especies de Quercus mediterráneos. Bol San Veg Plagas 27(1): 103-115.
- Tyagi S, Shah A, Karthik K, Rathinam M, Rai V, Chaudhary N, et al., 2022. Reactive oxygen species in plants: An invincible fulcrum for biotic stress mitigation. Appl Microbiol Biotechnol 106(18): 5945-5955. https://doi.org/10.1007/s00253-022-12138-z
- Wang SY, Herrera-Balandrano DD, Wang YX, Shi XC, Chen X, Jin Y, et al., 2022. Biocontrol ability of the Bacillus amyloliquefaciens group, B. amyloliquefaciens, B. velezensis, B. nakamurai, and B. siamensis, for the management of fungal postharvest diseases: A review. J Agr Food Chem 70(22): 6591-6616. https://doi.org/10.1021/acs.jafc.2c01745
- Wu B, Qi F, Liang Y, 2023. Fuels for ROS signaling in plant immunity. Trends Plant Sci 28(10): 1124-1131. https://doi.org/10.1016/j.tplants.2023.04.007
- Zeier J, 2013. New insights into the regulation of plant immunity by amino acid metabolic pathways: Amino acid metabolism and plant immunity. Plant Cell Environ 36(12): 2085-2103. https://doi.org/10.1111/pce.12122