Synthesis of a 12R-type hexagonal perovskite solid solution Sr<sub>3</sub>NdNb<sub>3−x</sub>Ti<sub>x</sub>O<sub>12−δ</sub> and the influence of acceptor doping on electrical properties

  1. Chinelatto, Adilson L. 12345
  2. Boulahya, Khalid 1112131415
  3. Pérez-Coll, Domingo 1234
  4. Amador, Ulises 1617181920
  5. Tabacaru, Corina 1234
  6. Nicholls, Simon 678910
  7. Hoelzel, Markus 21222324
  8. Sinclair, Derek C. 678910
  9. Mather, Glenn C. 1234
  1. 1 Instituto de Cerámica y Vidrio
    info

    Instituto de Cerámica y Vidrio

    Madrid, España

    ROR https://ror.org/02h7vfp25

  2. 2 Consejo Superior de Investigaciones Científicas
    info

    Consejo Superior de Investigaciones Científicas

    Madrid, España

    ROR https://ror.org/02gfc7t72

  3. 3 28049 Madrid
  4. 4 Spain
  5. 5 Departamento de Engenharia de Materiais
  6. 6 Department of Materials Science & Engineering
  7. 7 Sir Robert Hadfield Building
  8. 8 University of Sheffield
    info

    University of Sheffield

    Sheffield, Reino Unido

    ROR https://ror.org/05krs5044

  9. 9 Sheffield S1 3JD
  10. 10 UK
  11. 11 Departamento de Química Inorgánica I
  12. 12 Facultad de Ciencias Químicas
  13. 13 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  14. 14 Ciudad Universitaria
  15. 15 28040 Madrid
  16. 16 Facultad de Farmacia
  17. 17 Departamento de Química
  18. 18 Urbanización Monteprincipe
  19. 19 Universidad CEU San Pablo
    info

    Universidad CEU San Pablo

    Madrid, España

    ROR https://ror.org/00tvate34

  20. 20 28668 Madrid
  21. 21 Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II)
  22. 22 Technical University Munich
    info

    Technical University Munich

    Múnich, Alemania

    ROR https://ror.org/02kkvpp62

  23. 23 D-85747 Garching
  24. 24 Germany
Revista:
Dalton Transactions

ISSN: 1477-9226 1477-9234

Año de publicación: 2015

Volumen: 44

Número: 16

Páginas: 7643-7653

Tipo: Artículo

DOI: 10.1039/C5DT00170F GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Dalton Transactions

Resumen

A solid solution forms for Sr3NdNb3−xTixO12−δ with approximate limits 0 ≤ x ≤ 0.06. The system crystallizes with a 12R-type hexagonal perovskite structure in the space group R[3 with combining macron], as determined by neutron diffraction and selected area electron diffraction. The electrical properties of the end members have been investigated by impedance spectroscopy in the temperature range 550–800 °C under various gas atmospheres and as a function of oxygen and water-vapour partial pressure. Proton transport dominates under wet oxidising conditions in the temperature range 550–700 °C, as confirmed by the H+/D+ isotope effect. Acceptor doping considerably enhances proton conductivity with a value of 3.3 × 10−6 S cm−1 for the bulk response of x = 0.06 at 700 °C in moistened air. The presence of a −¼ slope for both doped and undoped samples in the range 10−19 ≤ pO2 ≤ 10−8 atm at 900 °C indicates n-type transport under reducing conditions following the extrinsic model attributable to acceptor centres. The conductivity is essentially independent of pO2 at 600 °C under dry oxidising conditions, consistent with oxide-ion transport; a positive power-law dependence at higher temperature indicates extrinsic behaviour and a significant electron–hole contribution. The dielectric constant at RT of nominally stoichiometric Sr3NdNb3O12 is εr ∼ 37, with a moderately high quality factor of Q × f ∼ 16 400 GHz at fr ∼ 6.4 GHz. The temperature coefficient of resonant frequency of x = 0 is τf ∼ 12 ppm °C−1, which lowers to −3 ppm °C−1 for the Ti-doped phase x = 0.06.

Referencias bibliográficas

  • Katz, (1964), Inorg. Chem., 3, pp. 205, 10.1021/ic50012a013
  • Darriet, (1995), J. Mater. Chem., 5, pp. 543, 10.1039/jm9950500543
  • Norby, (2004), Dalton Trans., pp. 3012, 10.1039/B403011G
  • Kreuer, (2003), Annu. Rev. Mater. Res., 33, pp. 333, 10.1146/annurev.matsci.33.022802.091825
  • Fabbri, (2010), Chem. Soc. Rev., 39, pp. 4355, 10.1039/b902343g
  • Kreuer, (1997), Solid State Ionics, 97, pp. 1, 10.1016/S0167-2738(97)00082-9
  • Haugsrud, (2006), Nat. Mater., 5, pp. 193, 10.1038/nmat1591
  • Tabacaru, (2013), Solid State Ionics, 253, pp. 239, 10.1016/j.ssi.2013.10.031
  • A. Feteira , D. C.Sinclair, I. M.Reaney, Y.Somiya and M. T.Lanagan, J. Am. Ceram. Soc., 2004, 1087, 10821087
  • Reaney, (2006), J. Am. Ceram. Soc., 89, pp. 2063
  • Colla, (1993), J. Appl. Phys., 74, pp. 3414, 10.1063/1.354569
  • Yamada, (2006), J. Eur. Ceram. Soc., 26, pp. 2059, 10.1016/j.jeurceramsoc.2005.09.060
  • Keith, (2004), Chem. Mater., pp. 2007, 10.1021/cm035317n
  • Rawal, (2009), Appl. Phys. Lett., 94, pp. 192904, 10.1063/1.3129867
  • Fang, (2009), J. Am. Ceram. Soc., 92, pp. 556, 10.1111/j.1551-2916.2008.02917.x
  • Hoelzel, (2012), Nucl. Instrum. Methods Phys. Res., Sect. A, 667, pp. 32, 10.1016/j.nima.2011.11.070
  • Rodriguez-Carvajal, (1993), Phys. B, 192, pp. 55, 10.1016/0921-4526(93)90108-I
  • Steil, (2000), J. Electrochem. Soc., 144, pp. 390, 10.1149/1.1837416
  • Pérez-Coll, (2010), Solid State Ionics, 181, pp. 20, 10.1016/j.ssi.2009.11.017
  • L. Haar , J. S.Gallagher and G. S.Kell, NBS/NRC Steam Tables, Hemisphere Publishing Corporation, New York, 1984
  • Pérez Flores, (2011), J. Mater. Chem., 21, pp. 13195, 10.1039/c1jm11975c
  • Averkova, (1987), Russ. J. Inorg. Chem., 32, pp. 1183
  • Howard, (2000), J. Phys.: Condens. Matter, 12, pp. L677
  • Woodward, (2005), Acta Crystallogr., Sect. B: Struct. Sci., 61, pp. 387, 10.1107/S0108768105015521
  • Trolliard, (2004), J. Solid State Chem., 177, pp. 1188, 10.1016/j.jssc.2003.10.024
  • Glazer, (1972), Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 28, pp. 3384, 10.1107/S0567740872007976
  • Irvine, (1990), Adv. Mater., 2, pp. 132, 10.1002/adma.19900020304
  • Haugsrud, (2006), Solid State Ionics, 177, pp. 1129, 10.1016/j.ssi.2006.05.011
  • Chan, (1981), J. Am. Ceram. Soc., 64, pp. 556, 10.1111/j.1151-2916.1981.tb10325.x
  • Rampling, (2003), J. Eur. Ceram. Soc., 23, pp. 1911, 10.1016/S0955-2219(02)00448-X
  • Chan, (1982), J. Am. Ceram. Soc., 65, pp. 167, 10.1111/j.1151-2916.1982.tb10388.x
  • Krug, (1995), Solid State Ionics, 81, pp. 111, 10.1016/0167-2738(95)00168-6
  • Schober, (1996), Solid State Ionics, 86–88, pp. 653, 10.1016/0167-2738(96)00230-5
  • Bonanos, (1999), J. Mater. Chem., 9, pp. 431, 10.1039/a805150j
  • Vineis, (1996), Mater. Res. Bull., 31, pp. 431, 10.1016/S0025-5408(96)00028-1
  • Shannon, (1993), J. Appl. Phys., 73, pp. 348, 10.1063/1.353856
  • Li, (2010), J. Am. Ceram. Soc., 93, pp. 4087, 10.1111/j.1551-2916.2010.03999.x
  • Wada, (2005), Jpn. J. Appl. Phys., 44, pp. 7094, 10.1143/JJAP.44.7094
  • Shannon, (1976), Acta Crystallogr., Sect. A: Fundam. Crystallogr., 32, pp. 751, 10.1107/S0567739476001551