<i>A</i>-site order in rhombohedral perovskite-like oxides La<sub>2−<i>x</i></sub>Sr<i><sub>x</sub></i>CoTiO<sub>6</sub>(0.6 ≤<i>x</i>≤ 1.0)

  1. Gómez-Pérez, Alejandro
  2. Ritter, Clemens
  3. Boulahya, Khalid
  4. Muñoz-Noval, Alvaro
  5. García-Alvarado, Flaviano
  6. Amador, Ulises
Journal:
Journal of Applied Crystallography

ISSN: 1600-5767

Year of publication: 2016

Volume: 49

Issue: 1

Pages: 31-39

Type: Article

DOI: 10.1107/S1600576715022566 GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Journal of Applied Crystallography

Abstract

The evolution of the room-temperature structure of the oxide series La2-xSrxCoTiO6 (0.6 [less-than or equal to] x [less-than or equal to] 1.0) was studied as a function of the Sr content using different diffraction techniques and applying the symmetry-adapted modes formalism (AMPLIMODES). The title compounds adopt perovskite-like structures of rhombohedral symmetry with an octahedral tilting scheme (a-a-a-) with either space group R\overline 3c or R32. The latter symmetry is observed in those cases (for x [asymptotically equal to] 0.6) where additional rock-salt-like ordering of La and Sr is produced in the perovskite A sites. Two composition-driven phase transitions are observed in the whole series La2-xSrxCoTiO6 (0.0 [less-than or equal to] x [less-than or equal to] 1.0). Using the concept of internal pressure, the effect of doping with Sr on the structure can be properly discussed. Both phase transitions seem to be of first order since they can be associated with discontinuities either in the entropy or in the structure. The first transition (P21/n [rightwards arrow] Pnma) occurs as the B cations become totally disordered. Along the whole compositional range the modes responsible for the out-of-phase tilting of BO6 octahedra remain active, but those associated with the in-phase octahedral tilting vanish for x [greater-than or equal to] 0.6, this being associated with the second transition (Pnma [rightwards arrow] R\overline 3c). Finally, for x = 1.0 the three pseudo-cubic cell parameters become very similar, pointing to a transition to a cubic structure which could be obtained by applying pressure or raising the temperature.

Bibliographic References

  • Adler, (2004), Chem. Rev., 104, pp. 4791, 10.1021/cr020724o
  • Alexei, (2014), J. Phys. Condens. Matter, 26, pp. 163201, 10.1088/0953-8984/26/16/163201
  • Castro, (1998), J. Synchrotron Rad., 5, pp. 657, 10.1107/S0909049597019079
  • Dachraoui, (2011), Chem. Mater., 23, pp. 2398, 10.1021/cm200226u
  • Djurado, (2003), J. Phys. Chem. B, 107, pp. 8321, 10.1021/jp0341220
  • Dove, (1997), Am. Mineral., 82, pp. 213, 10.2138/am-1997-3-401
  • Fergus, (2006), J. Power Sources, 162, pp. 30, 10.1016/j.jpowsour.2006.06.062
  • García-Martín, (2004), J. Am. Chem. Soc., 126, pp. 3587, 10.1021/ja038410l
  • Glazer, (1972), Acta Cryst. B, 28, pp. 3384, 10.1107/S0567740872007976
  • Gómez-Pérez, (2014), J. Appl. Cryst., 47, pp. 745, 10.1107/S1600576714004907
  • Hahn, T. (2005). Editor. International Tables for Crystallography, Vol. A, Space-Group Symmetry, 5th ed. Heidelberg: Springer.
  • Howard, (1998), Acta Cryst. B, 54, pp. 782, 10.1107/S0108768198004200
  • Howard, (2004), Acta Cryst. B, 60, pp. 249, 10.1107/S0108768104003714
  • Ishihara, T. (2009). Perovskite Oxide for Solid Oxide Fuel Cells. New York: Springer.
  • Ishihara, (2004), Solid State Ionics, 173, pp. 9, 10.1016/j.ssi.2004.07.045
  • Kennedy, (1999), Phys. Rev. B, 59, pp. 4023, 10.1103/PhysRevB.59.4023
  • Kennedy, (2001), J. Phys. Condens. Matter, 13, pp. L925, 10.1088/0953-8984/13/48/101
  • Khomchenko, (2013), J. Phys. Condens. Matter, 25, pp. 135902, 10.1088/0953-8984/25/13/135902
  • Knight, (1994), Solid State Ionics, 74, pp. 109, 10.1016/0167-2738(94)90199-6
  • Landau, L. D. & Lifshitz, E. M. (1959). Statistical Physics. London: Pergamon.
  • Le Bail, (1988), Mater. Res. Bull., 23, pp. 447, 10.1016/0025-5408(88)90019-0
  • Liu, (2007), J. Power Sources, 173, pp. 837, 10.1016/j.jpowsour.2007.07.076
  • Magyari-Köpe, (2002), Phys. Rev. B, 66, pp. 092103, 10.1103/PhysRevB.66.092103
  • Maupoey, (2012), J. Mater. Chem., 22, pp. 18033, 10.1039/c2jm33427e
  • Maupoey, (2014), Dalton Trans., 43, pp. 14099, 10.1039/C4DT01337A
  • Mitchell, R. H. (2002). Perovskite: Modern and Ancient. Ontario: Almaz Press.
  • Mountstevens, (2003), J. Phys. Condens. Matter, 15, pp. 8315, 10.1088/0953-8984/15/49/010
  • Orlovskaya, N. & Browning, N. (2004). Mixed Ionic Electronic Conducting Perovskites for Advanced Energy Systems. Dordrecht: Springer.
  • Orobengoa, (2009), J. Appl. Cryst., 42, pp. 820, 10.1107/S0021889809028064
  • Pagnier, (2000), Eur. Phys. J. AP, 9, pp. 1, 10.1051/epjap:2000192
  • Pérez-Flores, (2013), Chem. Mater., 25, pp. 2484, 10.1021/cm4008014
  • Pérez-Flores, (2012), Int. J. Hydrogen Energy, 37, pp. 7242, 10.1016/j.ijhydene.2011.10.101
  • Perez-Mato, (2010), Acta Cryst. A, 66, pp. 558, 10.1107/S0108767310016247
  • Raveau, (2012), Dalton Trans., 40, pp. 7908
  • Rodríguez-Carvajal, (1993), Phys. B Condens. Matter, 192, pp. 55, 10.1016/0921-4526(93)90108-I
  • Rubio-Zuazo, (2013), J. Phys. Conf. Ser., 425, pp. 052005, 10.1088/1742-6596/425/5/052005
  • Shannon, (1976), Acta Cryst. A, 32, pp. 751, 10.1107/S0567739476001551
  • Shibasaki, (2005), J. Therm. Anal. Calorim., 81, pp. 575, 10.1007/s10973-005-0826-z
  • Sugahara, (2011), Appl. Phys. Lett., 99, pp. 062107, 10.1063/1.3623476
  • Sun, (2009), J. Power Sources, 187, pp. 85, 10.1016/j.jpowsour.2008.10.067
  • Tolédano, J. C. & Toléadano, P. (1987). The Landau Theory of Phase Transitions: Application to Structural, Incommensurate, Magnetic, and Liquid Crystal Systems. London: World Scientific Publishing Company.
  • Trofimenko, (1999), Solid State Ionics, 124, pp. 263, 10.1016/S0167-2738(99)00217-9
  • Woodward, (1997), Acta Cryst. B, 53, pp. 32, 10.1107/S0108768196010713
  • Woodward, (1997), Acta Cryst. B, 53, pp. 44, 10.1107/S0108768196012050
  • Yuste, (2011), Dalton Trans., 40, pp. 7908, 10.1039/c1dt10196j
  • Zhao, (2009), J. Phys. Condens. Matter, 21, pp. 235403, 10.1088/0953-8984/21/23/235403
  • Zhou, (2011), Phys. Rev. Lett., 106, pp. 057201, 10.1103/PhysRevLett.106.057201