Effectiveness of a peer mentoring on university dropout and academic performance

  1. Miguel A. Alonso 1
  2. Aitana González-Ortiz-de-Zárate 2
  3. M. Ángeles Gómez-Flechoso 1
  4. Marco Castrillón 1
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  2. 2 Universidad Nacional de Educación a Distancia
    info

    Universidad Nacional de Educación a Distancia

    Madrid, España

    ROR https://ror.org/02msb5n36

Journal:
Psicología educativa

ISSN: 1135-755X

Year of publication: 2024

Volume: 30

Issue: 1

Pages: 29-37

Type: Article

DOI: 10.5093/PSED2024A5 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Psicología educativa

Sustainable development goals

Abstract

Mentoring programs have been proposed to reduce dropout and increase academic performance. We analyzed the effect of peer mentoring on university dropout and academic performance in the context of Spain. We applied a quasi-experimental posttest-only control group design with 3,774 students (mentees, n = 1,887; control, n = 1,887). Mentees had participated in a peer mentoring program. We apply the student’s t-test, Cohen’s d, phi statistic, and chi-square statistic. Mentees exhibited lower dropout than controls and showed higher academic performance regardless of the area of knowledge. Results support the implementation of mentoring programs in Spanish universities with the goal of reducing student dropout and increasing academic performance. The research provides empirical evidence for theory building in higher education studies, developmental relationships, and integration programs.

Bibliographic References

  • Alban, M., & Mauricio, D. (2019). Predicting university dropout through data mining: A systematic literature. Indian Journal of Science and Technology, 12(4), 1-12. https://doi.org/10.17485/ijst/2019/v12i4/139729
  • Aljohani, O. (2016). A comprehensive review of the major studies and theoretical models of student retention in higher education. Higher Education Studies, 6(2), 1-18. https://doi.org/10.5539/hes.v6n2p1
  • Alonso-García, M. A. (2021). Proposal of a peer mentoring model in university environments. Revista Electrónica Educare, 25(1), 356-372. https://doi. org/10.15359/ree.25-1.19
  • Alonso-García, M. A., Calles, A., & Sánchez-Ávila, C. (2012). Diseño y desarrollo de programas de mentoring en organizaciones. Síntesis.
  • Alonso García, M. A., González Ortiz de Zárate, A., Gómez Flechoso, M. A. & Berrocal Berrocal, F. (2023). Influence of the mentor competence on the mentee satisfaction: Mediation and moderation. In J. A. Jaworski (Ed.), Advances in sociology research (pp. 167-186). Nova.
  • Avello-Martínez, R. (2022, June 29). ¿Por qué reportar el tamaño del efecto? Comunicar, 137, 1-10. https://doi.org/10.3916/escuela-de-autores-137
  • Bardach, L., Lüftenegger, M., Oczlon, S., Spiel, C., & Schober, B. (2020). Contextrelated problems and university students’ dropout intentions—the buffering effect of personal best goals. European Journal of Psychology of Education, 35(2), 477-493. https://doi.org/10.1007/s10212-019- 00433-9
  • Behr, A., Giese, M., & Theune, K. (2020). Early prediction of university dropouts–a random forest approach. Jahrbücher für Nationalökonomie und Statistik, 240(6), 743-789. https://doi.org/10.1515/jbnst-2019-0006
  • Bernardo, A., Esteban, M., Fernández, E., Cervero, A., Tuero, E., & Solano, P. (2016). Comparison of personal, social and academic variables related to university drop-out and persistence. Frontiers in Psychology, 7, Article 1610. https://doi.org/10.3389/fpsyg.2016.01610
  • Cannistrà, M., Masci, C., Ieva, F., Agasisti, T., & Paganoni, A. M. (2021). Early predicting dropout of university students: An application of innovative multilevel machine learning and statistical techniques. Studies in Higher Education, 47(9), 1935-1956. https://doi.org/10.1080/03075079 .2021.2018415
  • Cárdenas, J. M., & Arancibia, H. (2014). Potencia estadística y cálculo del tamaño del efecto en G* Power: complementos a las pruebas de significación estadística y su aplicación en psicología. Salud & Sociedad, 5(2), 210-224. https://doi.org/10.22199/S07187475.2014.0002.00006
  • Casanova, J. R., Cervero Fernández-Castañón, A., Núñez Pérez, J. C., Almeida, L. S., & Bernardo Gutiérrez, A. B. (2018). Factors that determine the persistence and dropout of university students. Psicothema, 3(4), 408- 414. https://doi.org/10.7334/psicothema2018.155
  • Collins, A., Lewis, I., Stracke, E., & Vanderheide, R. (2014). Talking career across disciplines: Peer group mentoring for women academics. International Journal of Evidence Based Coaching and Mentoring, 12(1), 92-108. https://search.informit.org/doi/10.3316/informit.781886556076792
  • Conde, Á., Deaño, M., Pinto, A. A., Iglesias-Sarmiento, V., Alfonso, S., GarcíaSeñorán, M., Limia, S., & Tellado, F. (2017). Expectativas académicas y planificación. Claves para la interpretación del fracaso y el abandono académico. International Journal of Developmental and Educational Psychology, 1(1), 167-176. https://doi.org/10.17060/ijodaep.2017. n1.v1.909
  • Constate-Amores, A., Martínez, E. F., Asencio, E. N., & Fernández-Mellizo, M. (2021). Factores asociados al abandono universitario. Educación XX1, 24(1), 17-44. https://doi.org/10.5944/educXX1.26889
  • Corredor-García, M., & Bailey-Moreno, J. (2020). Motivación y concepciones que alumnos de educación básica atribuyen a su rendimiento académico en matemáticas. Revista Fuentes, 22(1), 127-141. https://doi. org/10.12795/revistafuentes.2020.v22.i1.10
  • Crisp, G., & Cruz, I. (2009). Mentoring college students: A critical review of the literature between 1990 and 2007. Research in Higher Education, 50(6), 525-545. https://doi.org/10.1007/s11162-009-9130-2
  • Demetriou, C., & Schmitz-Seiborski, A. (2011). Integration, motivation, strengths and optimism: Retention theories past, present and future. In R. Hayes (Ed.), Proceedings of the 7th National Symposium on Student Retention (pp. 300-312). The University of Oklahoma.
  • Egege, S., & Kutieleh, S. (2015). Peer mentors as a transition strategy at university: Why mentoring needs to have boundaries. Australian Journal of Education, 59(3), 265-277. https://doi. org/10.1177/0004944115604697
  • European Commission. (2022, June 10). European Credit Transfer and Accumulation System (ECTS). European Commission. https:// education.ec.europa.eu/education-levels/higher-education/highereducation-initiatives/inclusive-and-connected-higher-education/ european-credit-transfer-and-accumulation-system
  • European Education Area. (2022, June 27). Strategic framework. European Commission. https://education.ec.europa.eu/about-eea/strategicframework
  • European Union. (2022). Spain. European Union. https://european-union. europa.eu/principles-countries-history/country-profiles/spain_es
  • Fernández-García, A. J., Preciado, J. C., Melchor, F., Rodriguez-Echeverria, R., Conejero, J. M., & Sánchez-Figueroa, F. (2021). A real-life machine learning experience for predicting university dropout at different stages using academic data. IEEE Access, 9, 133076-133090. https:// doi.org/10.1109/ACCESS.2021.3115851
  • Fernández-Mellizo, M. (2022). Análisis del abandono de los estudiantes de grado en las universidades presenciales en España. Programa Editorial del Ministerio de Universidades. https://www.universidades.gob.es/ stfls/universidades/ministerio/ficheros/14_Informe_abandono_para_ maquetar.pdf
  • Flores, V., Heras, S., & Julian, V. (2022). Comparison of predictive models with balanced classes using the SMOTE method for the forecast of student dropout in higher education. Electronics, 11(3), 1-16. https:// doi.org/10.3390/electronics11030457
  • Fouarge, D., & Heß, P. (2023). Preference-choice mismatch and university dropout. Labour Economics, 83, Article 102405. https://doi. org/10.1016/j.labeco.2023.102405
  • Frey, B. (2018). The SAGE encyclopedia of educational research, measurement, and evaluation (vols. 1-4). SAGE Publications, Inc. https://doi.org/10.4135/9781506326139
  • Gairín, J., Triado, X. M., Feixas, M., Figuera, P., Aparicio-Chueca, P., & Torrado, M. (2014). Student dropout rates in Catalan universities: Profile and motives for disengagement. Quality in Higher Education, 20(2), 165- 182. https://doi.org/10.1080/13538322.2014.925230
  • Gershenfeld, S. (2014). A review of undergraduate mentoring programs. Review of Educational Research, 84(3), 365-391. https://doi. org/10.3102/0034654313520512
  • González-Benito, A., López-Martín, E., Expósito-Casas, E., & MorenoGonzález, E. (2021). Motivación académica y autoeficacia percibida y su relación con el rendimiento académico en los estudiantes universitarios de la enseñanza a distancia. RELIEVE Revista Electrónica de Investigación y Evaluación Educativa 27(2), 1-15. https://doi.org/10.30827/relieve.v27i2.21909
  • González-Ramírez, T., & Pedraza-Navarro, I. (2017). Variables sociofamiliares asociadas al abandono de los estudios universitarios. Educatio Siglo XXI, 35(2), 365-388. https://doi.org/10.6018/j/298651
  • Jacobi, M. (1991). Mentoring and undergraduate academic success: A literature review. Review of Educational Research, 61(4), 505-532. https://doi.org/3102/00346543061004505
  • Jiménez-Caballero, J. L., Camuñez, J. A., González-Rodríguez, M. R., & Fuentes, P. (2014). Factores determinantes del rendimiento académico universitario en el Espacio Europeo de Educación Superior. Innovar, 25(58), 159-176. https://doi.org/10.15446/innovar.v25n58.52440
  • Khoo, S., Zhao, J., Walker, A., Kirkman, J., & Spehar, B. (2019). Transitions and choices: Graduate student mentoring for psychology honours students. Student Success 10, 147-154. https://doi.org/10.5204/ssj. v10i1.648
  • La Moncloa. (2022). La inversión pública en educación alcanza su máximo histórico con 55.265,8 millones en 2020. La Moncloa. https://cutt. ly/9KFN8cn
  • Leidenfrost, B., Strassnig, B., Schtz, M., Carbon, C. C., & Schabmann, A. (2014). The impact of peer mentoring on mentee academic performance: Is any mentoring style better than no mentoring at all? International Journal of Teaching and Learning in Higher Education, 26(1), 102-111. https://files.eric.ed.gov/fulltext/EJ1043041.pdf
  • León, B. (2008). Atención plena y rendimiento académico en estudiantes de enseñanza secundaria. European Journal of Education and Psychology, 1(3), 17-26. https://doi.org/10.30552/ejep.v1i3.11
  • Maluenda-Albornoz, J., Infante-Villagrán, V., Galve-González, C., FloresOyarzo, G., & Berríos-Riquelme, J. (2022). Early and dynamic socioacademic variables related to dropout intention: A predictive model made during the pandemic. Sustainability, 14(2), Article 831. https:// doi.org/10.3390/su14020831
  • McMurtry, A. (2020). Relief for the exhausted post-positivist: New epistemological choices transcend positivism, relativism, and even post-positivism. Canadian Medical Education Journal, 11(6), Article e197. https://doi.org/10.36834/cmej.71217
  • Mestan, K. (2016). Why students drop out of the bachelor of arts. Higher Education Research & Development, 35(5), 983-996. https://doi.org/10 .1080/07294360.2016.1139548
  • Mortagy, Y., Boghikian-Whitby, S., & Helou, I. (2018). An analytical investigation of the characteristics of the dropout students in higher education. Issues in Informing Science and Information Technology, 15, 249-278. https://doi.org/10.28945/3999
  • Olaya, P. C., Giraldo, A. J. L., & Carpintero, Á. A. T. (2016, November). ¿Cuánto cuesta la deserción estudiantil? Sistema de cálculo de costos monetarios del abandono estudiantil (Sissemae). Congresos CLABES VI. Quito, Ecuador. https://core.ac.uk/download/pdf/234020946.pdf
  • Opazo, D., Moreno, S., Álvarez-Miranda, E., & Pereira, J. (2021). Analysis of first-year university student dropout through machine learning models: A comparison between universities. Mathematics, 9(20), Article 2599. https://doi.org/10.3390/math9202599
  • Ortiz-Lozano, J. M., Rua-Vieites, A., Bilbao-Calabuig, P., & Casadesús-Fa, M. (2018). University student retention: Best time and data to identify undergraduate students at risk of dropout. Innovations in Education and Teaching International, 57(1), 74-85. https://doi.org/10.1080/147 03297.2018.1502090
  • Oxford. (2020, August 05). Academic achievement. Oxford Bibliographies. https://doi.org/ 10.1093/OBO/9780199756810-0108
  • Palacios, C. A., Reyes-Suárez, J. A., Bearzotti, L. A., Leiva, V., & Marchant, C. (2021). Knowledge discovery for higher education student retention based on data mining: Machine learning algorithms and case study in Chile. Entropy, 23(4), Article 485. https://doi.org/10.3390/e23040485
  • Prieto, J. M. (2020). Una revisión sistemática sobre gamificación, motivación y aprendizaje en universitarios. Teoría De La Educación; Revista Interuniversitaria, 32(1), 73-99. https://doi.org/10.14201/teri.20625
  • Saleem, S., & Ayedh, A. (2013). Student drop-out trends at Sultan Qaboos University and Kuwait University: 2000-2011. College Student Journal, 47(3), 499-506.
  • Sánchez-Santamaría, J., Boroel-Cervantes, B.I., López-Garrido, F. M., & Hortigüela-Alcalá, D. (2021). Motivation and evaluation in education from the sustainability perspective: A review of the scientific literature. Sustainability, 13(7), 1-19. https://doi.org/10.3390/su13074047
  • Sandoval-Palis, I., Naranjo, D., Vidal, J., & Gilar-Corbi, R. (2020). Early dropout prediction model: A case study of university levelling course students. Sustainability, 12(22), Article 9314. https://doi.org/10.3390/ su12229314
  • Schnettler, T., Bobe, J., Scheunemann, A., Fries, S., & Grunschel, C. (2020). Is it still worth it? Applying expectancy-value theory to investigate the intraindividual motivational process of forming intentions to drop out from university. Motivation and Emotion, 44(4), 491-507. https://doi. org/10.1007/s11031-020-09822-w
  • Shauran, B., Jain, R., & Jain, N. (2021). Impact of mentoring on academic success of students in similar and cross-gender mentoring relationships. International Journal of Indian Culture and Business Management, 24(1), 63-80. https://doi.org/10.1504/IJICBM.2021.117924
  • Siri, A. (2015). Predicting students’ dropout at university using artificial neural networks. Italian Journal of Sociology of Education, 7(2), 225-247. http://ijse.padovauniversitypress.it/system/files/papers/2015_2_9.pdf
  • Sneyers, E., & De Witte, K. (2018). Interventions in higher education and their effect on student success: A meta-analysis. Educational Review, 70(2), 208-228. https://doi.org/10.1080/00131911.2017.1300874
  • Solís, M., Moreira, T., Gonzalez, R., Fernandez, T., & Hernandez, M. (2018, July). Perspectives to predict dropout in university students with machine learning. 2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI), 1-6. https://doi.org/10.1109/ IWOBI.2018.8464191
  • Stewart, M. (2012). The Spanish language today. Routledge. Suhlmann, M., Sassenberg, K., Nagengast, B., & Trautwein, U. (2018). Belonging mediates the effects of student university fit on well-being, motivation, and drop-out intention. Social Psychology, 49(1), 16-28. https://doi.org/10.1027/1864-9335/a000325
  • Universidad Complutense de Madrid (UCM, 2022). Distribución del estudiantado de la UCM según género. Universidad Complutense de Madrid. https://www.ucm.es/unidaddeigualdad/distribucion-deestudiantes-de-la-ucm-segun-generoUNESCO Institute of Statistics. (2021). Government expenditure on education, total (% of GDP). The World Bank. https://data.worldbank. org/indicator/SE.XPD.TOTL.GD.ZS
  • Venegas-Muggli, J. I., Cifuentes-Donald, C., Rozas-Retamal, M., & González-Clares, M. J. (2021). Determining factors of labour market outcomes for recently graduated, underrepresented college students. Australian Journal of Career Development, 30(2), 150-162. https://doi. org/10.1177/1038416221101201
  • Woo, H. R. (2017). Exploratory study examining the joint impacts of mentoring and managerial coaching on organizational commitment. Sustainability, 9(2), Article 181. https://doi.org/10.3390/su9020181