Unprecedented simultaneous enhancement in damage tolerance and fatigue resistance of zirconia/Ta composites

  1. Smirnov, A.
  2. Beltrán, J. I. 1
  3. Rodriguez-Suarez, T.
  4. Pecharromán, C.
  5. Muñoz, M. C.
  6. Moya, J. S.
  7. Bartolomé, J. F.
  1. 1 Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior deInvestigaciones Científicas (CSIC)
Revista:
Scientific Reports

ISSN: 2045-2322

Año de publicación: 2017

Volumen: 7

Número: 44922

Páginas: 13

Tipo: Artículo

DOI: 10.1038/SREP44922 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Scientific Reports

Referencias bibliográficas

  • Stevens, R. An introduction to zirconia: zirconia and zirconia ceramics. 2nd ed. New York: Magnesium Electrum, Twickenham. (Magnesium Electrón Publications, 1986).
  • Ritchie, R. O. The conflicts between strength and toughness. Nat. Mat. 10, 817–822 (2011).
  • Pecharromán, C. et al. Zirconia/nickel interfaces in micro- and nanocomposites Mat. Res. Adv. Tech. 96, 507–514 (2005).
  • Moya, J. S., López-Esteban, S., Pecharromán, C., Bartolomé, J. F. & Torrecillas, R. Mechanically stable monoclinic zirconia-nickel composite. J. Am. Ceram. Soc. 85, 2119–2121 (2002).
  • Pecharromán, C., López-Esteban, S., Bartolomé, J. F. & Moya, J. S. Evidence of nearest-neighbor ordering in wet-processed zirconia–nickel composites J. Am. Ceram. Soc 84, 2439–41 (2001).
  • López-Esteban, S., Bartolomé, J. F., Moya, J. S. & Tanimoto, T. Mechanical performance of 3Y-TZP/Ni composites: Tensile, bending, and uniaxial fatigue tests. J. Mat. Res. 17, 1592–1600 (2002).
  • Jung, Y. G., Choi, S., Oh, C. & Paik, U. Residual stress and thermal properties of zirconia/metal (nickel and stainless steel 304) functionally graded materials fabricated by hot pressing. J. Mat. Sci. 32, 3841 (1997).
  • Yamada, Y., Kawasaki, A., Taya, M. & Watanabe, R. Effect of debonding at the phase interface on Young’s modulus in sintered PSZ/stainless steel composites. J. Jap. Inst. Met. 58, 162 (1994).
  • López-Esteban, S., Bartolomé, J. F., Pecharromán, C. & Moya, J. S. Zirconia/stainless-steel continuous functionally graded material. J. Eur. Ceram. Soc. 22, 2799–2804 (2002).
  • Pedzich, Z. & Wajler, C. Slow crack propagation in Y-TZP/metal composites. J. Eur. Ceram. Soc. 26, 679–682 (2006).
  • Fernandez-Garcia, E., Gutierrez-Gonzalez, C. F., Fernandez, A., Torrecillas, R. & Lopez-Esteban, S. Processing and spark plasma sintering of zirconia/titanium cermets. Ceram. Int. 39, 6931–6936 (2013).
  • Vives, S., Guizard, C., Oberlin, C. & Cot L. Zirconia-tungsten composites: synthesis and characterization for different metal volume fractions. J. Mat. Sci. 36, 5271–5280 (2001).
  • Wildan, M., Edrees, H. J. & Hendry A. Ceramic matrix composites of zirconia reinforced with metal particles. Mat. Chem. Phys. 75, 276–283 (2002).
  • Hsieh, C. L. & Tuan, W. H. Thermal expansion behavior of a model ceramic–metal composite. Mat. Sci. Eng. A 460–461, 453–458 (2007).
  • Hsieh, C. L. & Tuan, W. H. Elastic properties of ceramic–metal particulate composites. Mat. Sci. Eng. A 393, 133–139 (2005).
  • Bartolomé, J. F. et al. Influence of ceramic/metal interface adhesion on crack growth resistance of zirconia/Nb ceramic matrix composites. Acta Mater. 56, 3358–66 (2008).
  • Jarząbek, D. M., Chmielewski, M. & Wojciechowski, T. The measurement of the adhesion force between ceramic particles and metal matrix in ceramic reinforced-metal matrix composites. Comp. Part A: App. Sci. Man. 76, 124–130 (2015).
  • Murugesh, L., Venkateswara Rao, K. T. & Ritchie R. O. Powder processing of ductile-phase-toughened Nb-Nb3Al in situ composites. Mat. Sci. Eng. A 189, 201–208 (1994)
  • Lailei, W. et al. The phase stability and mechanical properties of Nb–C system: Using first-principles calculations and nano-indentation. J. Alloys Comp. 561, 220–227 (2013).
  • Smith, J. F., Carlson, O. N. & De Avillez, R. R. The niobium-carbon system. J. Nuclear Mat. 148, 1–16 (1987).
  • Fromm, E. & Roy U. The high-temperature solid solubility limit of carbon in tantalum. J. Less. Common Met. 8, 73–75 (1965).
  • Hörz G., Lindenmaier K. & Klaiss R. High-temperature solid solubility limit of carbon in niobium and tantalum. J. Less. Common Met. 35, 97–105 (1974).
  • Smirnov, A. & Bartolomé, J. F. Mechanical properties and fatigue life of ZrO2–Ta composites prepared by hot pressing. J. Eur. Ceram. Soc. 32, 3899–3904 (2012).
  • Smirnov, A., Gutierrez-Gonzalez, C. F. & Bartolomé, J. F. Cyclic fatigue life- and crack-growth behavior of zirconia–niobium composites. J. Am. Ceram. Soc. 96, 1709–1712 (2013).
  • Zimmermann, A., Hoffman, M., Emmel T., Gross D. & Rödel J. Failure of metal-ceramic composites with spherical inclusions. Acta Mater. 49, 3177–3187 (2001).
  • Raddatz O., Schneider, G. A. & Claussen N. Modelling of R-curve behavior in ceramic/metal composites. Acta mater. 46, 6381–6395 (1998).
  • Gutiérrez-González, C. F. & Bartolomé, J. F. Damage tolerance and R-curve behavior of Al2O3–ZrO2–Nb multiphase composites with synergistic toughening mechanism. J. Mat. Res. 23, 570–578 (2008).
  • Bartolomé, J. F., Gutiérrez-González, C. F. & Torrecillas, R. Mechanical properties of alumina–zirconia–Nb micro-nano-hybrid composites. Comp. Sci. Technol. 68, 1392–1398 (2008).
  • Bartolomé, J. F., Gutiérrez-González, C. F., Pecharromán, C. & Moya, J. S. Synergistic toughening mechanism in 3Y-TZP/Nb composites. Acta Mater. 55, 5924–5933 (2007).
  • Torres, Y. et al. Fracture and fatigue behaviour of mullite/molybdenum composites. Key Eng. Mat. 290, 110–120 (2005).
  • Venkateswara Rao, K. T., Odette, G. R. & Ritchie, R. O. On the contrasting role of ductile-phase reinforcements in the fracture toughness and fatigue-crack propagation behavior of TiNb/γ-TiAl intermetallic matrix composites. Acta Metal. Mat. 40, 353–361 (1992).
  • Badrinarayanan, K., McKelvey, A. L., Venkateswara Rao, K. T. & Ritchie, R. O. Fracture and fatigue crack growth in ductile-phase toughened molybdenum disilicide: effects of niobium wire vs particulate reinforcements. Metal. Mat. Transact. A27, 3781–3792 (1996).
  • Shen, Y. & Clarke, D. R. Resistance to low-lemperature degradation of equimolar YO1.5–TaO2.5 stabilized tetragonal ZrO2 ceramics in air. J. Am. Ceram. Soc. 93, 2024–2027 (2010).
  • Raghavan, S., Wang, H., Porter, W. D., Dinwiddie, R. B. & Mayo, M. J. Thermal properties of zirconia co-doped with trivalent and pentavalent oxides. Acta mater. 49, 169–179 (2001).
  • Kobyakov V. P. & Ponomarev I. Specific features of oxygen dissolution in refractory metals in gas-phase deposition. Crystallography Reports 47, 106–110 (2002).
  • Bieler, T. R. et al. Grain boundary responses to heterogeneous deformation in tantalum polycrystals. JOM 66, 121–128 (2014).
  • Muñoz, M. C., Gallego S., Beltrán J. I. & Cerdá J. Adhesion at metal–ZrO2 interfaces. Surf. Scien. Rep. 61, 303 (2006).
  • Beltrán, J. I. & Muñoz, M. C. Ab-initio study of the decohesion properties in oxide/metal. Phys. Rev. B 78, 245417 (2008).
  • Gutiérrez-González, C. F., Moya, J. S., Palomares, F. J. & Bartolomé, J. F. Low-temperature aging degradation-free 3Y-TZP/Nb composites. J. Am. Ceram. Soc 93, 1842–1844 (2010).
  • Kim, D.-J. Effect of Ta2O5, Nb2O5, and HfO2 Alloying on the transformability of Y2O3-stabilized tetragonal ZrO2 . J. Am. Ceram. Soc. 73, 115–120 (1990).
  • Smirnov, A. & Bartolomé, J. F. Microstructure and mechanical properties of ZrO2 ceramics toughened by 5-20 vol.% Ta metallic particles fabricated by pressureless sintering. Ceram. Inter. 40, 1829–184 (2014).
  • Boyce, B. L. et al. The morphology of tensile failure in tantalum. Metal. Mat. Transact. A, 44, 4567–4580 (2013).
  • Bartolomé, J. F., Moya, J. S., Llorca J. & Anglada, M. Fatigue crack growth behaviour in mullite/alumina functionally graded ceramics. J. Am. Ceram. Soc. 81, 1502–1508 (1998).
  • Gerberich, W. W. & Jatavallabhula, K. Quantitative fractography and dislocation interpretations of the cyclic cleavage crack growth process. Acta Metal. 31, 241–255 (1983).
  • Dickson, I., Uribe-Perez, I. & Geckinli, E. Fractographic aspects of cyclic cleavage. Mater. Sci. Eng. 60, 231–240 (1983).
  • Murugesh, L., Venkateswara Rao, K. T. & Ritchie R. O. Crack growth in a ductile-phase-toughened Nb/Nb3Al in situ intermetallic composite under monotonic and cyclic loading. Scripta Metal. et Mat. 29, 107–1112 (1993).
  • Ritchie, R. O., Gilbert, C. J. & McNaney, J. M. Mechanics and mechanisms of fatigue damage and crack growth in advanced materials. Int. J. Solids Struc. 37, 311–329 (2000).
  • Emsley, J. The ElementsOxford University Press, Oxford, UK, 3rd edition, (Oxford, 1997).
  • Buck, A. Fatigue properties of pure metals. Int. J. Fract. Mech. 3, 145–152 (1967).
  • Diaz, M., Bartolomé, J. F., Requena, J. & Moya, J. S. Wet processing of mullite/molybdenum composites. J. Eur. Ceram. Soc. 20, 1907–14 (2000).
  • Garvie, R. C. & Nicholson P. S. Phase analysis in zirconia systems. J. Am. Ceram. Soc. 55, 303–305 (1972).
  • Toraya, H., Yoshimura, M. & Somiya, S. Calibration curve for quantitative analysis of the monoclinic tetragonal ZrO2 system by X-ray diffraction. J. Am. Ceram. Soc. 67, 119–121 (1984).
  • Bartolomé, J. F., Smirnov, A., Kurland, H.-D., Grabow J. & Müller, F. A. New ZrO2/Al2O3 nanocomposite fabricated from hybrid nanoparticles prepared by CO2 laser Co-vaporization. Sci. Rep. 6, 20589 (2016).