Mutual synchronization of spin torque nano-oscillators through a long-range and tunable electrical coupling scheme

  1. Lebrun, R.
  2. Tsunegi, S.
  3. Bortolotti, P.
  4. Kubota, H.
  5. Jenkins, A. S.
  6. Romera, M. 1
  7. Yakushiji, K.
  8. Fukushima, A.
  9. Grollier, J.
  10. Yuasa, S.
  11. Cros, V.
  1. 1 Unite´ Mixte de Physique CNRS, Thales, Universite´ Paris-Sud, Universite´ Paris-Saclay, Palaiseau 91767, France
Revista:
Nature Communications

ISSN: 2041-1723

Año de publicación: 2017

Volumen: 8

Número: 1

Páginas: 15825 -1-15825-7

Tipo: Artículo

DOI: 10.1038/NCOMMS15825 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Nature Communications

Resumen

The concept of spin-torque-driven high-frequency magnetization dynamics, allows the potential construction of complex networks of non-linear dynamical nanoscale systems, combining the field of spintronics and the study of non-linear systems. In the few previous demonstrations of synchronization of several spin-torque oscillators, the short-range nature of the magnetic coupling that was used has largely hampered a complete control of the synchronization process. Here we demonstrate the successful mutual synchronization of two spin-torque oscillators with a large separation distance through their long range self-emitted microwave currents. This leads to a strong improvement of both the emitted power and the linewidth. The full control of the synchronized state is achieved at the nanoscale through two active spin transfer torques, but also externally through an electrical delay line. These additional levels of control of the synchronization capability provide a new approach to develop spin-torque oscillator-based nanoscale microwave-devices going from microwave-sources to bio-inspired networks.

Referencias bibliográficas

  • Kaka, S. et al. Mutual phase-locking of microwave spin torque nano-oscillators. Nature 437, 389–392 (2005).
  • Mancoff, F. B., Rizzo, N. D., Engel, B. N. & Tehrani, S. Phase-locking in double-point-contact spin-transfer devices. Nature 437, 393–395 (2005).
  • Pufall, M., Rippard, W., Russek, S., Kaka, S. & Katine, J. Electrical measurement of spin-wave interactions of proximate spin transfer nanooscillators. Phys. Rev. Lett. 97, 087206 (2006).
  • Dumas, R. K. & Akerman, J. Spintronics: channelling spin waves. Nat. Nanotechnol. 9, 503–504 (2014).
  • Sani, S. et al. Mutually synchronized bottom-up multi-nanocontact spin-torque oscillators. Nat. Commun. 4, 2731 (2013).
  • Ruotolo, A. et al. Phase-locking of magnetic vortices mediated by antivortices. Nat. Nanotechnol. 4, 528–532 (2009).
  • Slavin, A. & Tiberkevich, V. Theory of mutual phase locking of spin-torque nanosized oscillators. Phys. Rev. B 74, 104401 (2006).
  • Slavin, A. Microwave sources: spin-torque oscillators get in phase. Nat. nanotechnol. 4, 479–480 (2009).
  • Locatelli, N. et al. Efficient synchronization of dipolarly coupled vortex-based spin transfer nano-oscillators. Sci. Rep. 5, 17039 (2015).
  • Houshang, A. et al. Spin-wave-beam driven synchronization of nanocontact spin-torque oscillators. Nat. Nanotechnol. 11, 280–286 (2016).
  • Grollier, J., Cros, V. & Fert, A. Synchronization of spin-transfer oscillators driven by stimulated microwave currents. Phys. Rev. B 73, 60409 (2006).
  • Locatelli, N., Cros, V. & Grollier, J. Spin-torque building blocks. Nat. Material 13, 11–20 (2014).
  • Tiberkevich, V., Slavin, A., Bankowski, E. & Gerhart, G. Phase-locking and frustration in an array of nonlinear spin-torque nano-oscillators. Appl. Phys. Lett. 95, 262505 (2009).
  • Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001).
  • Pikovsky, A., Rosenblum, M. & Kurths, J. A Universal Concept in Nonlinear Sciences Cambridge University Press (2001).
  • Nikonov, D. E. et al. Coupled-oscillator associative memory array operation for pattern recognition. IEEE J. Explor. Solid-State Comput. Devices Circuits 1, 85–93 (2015).
  • Levitan, S. P. et al. in 13th International Workshop on Cellular Nanoscale Networks and their Applications, 1–6Turin (2012) http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6331473&isnumber=6331400.
  • Zhao, W. & Prenat, G. Spintronics Based Computing New York Springer (2015).
  • Georges, B., Grollier, J., Cros, V. & Fert, A. Impact of the electrical connection of spin transfer nano-oscillators on their synchronization: an analytical study. Appl. Phys. Lett. 92, 232504-232504-3 (2008).
  • Slavin, A. & Tiberkevich, V. Nonlinear auto-oscillator theory of microwave generation by spin-polarized current. IEEE Trans. Magnet. 45, 1875–1918 (2009).
  • Hamadeh, A. et al. Origin of spectral purity and tuning sensitivity in a spin transfer vortex nano-oscillator. Phys. Rev. Lett. 112, 257201 (2014).
  • Lebrun, R. et al. Nonlinear behavior and mode coupling in spin-transfer nano-oscillators. Phys. Rev. Appl. 2, 061001 (2014).
  • Lebrun, R. et al. Understanding of phase noise squeezing under fractional synchronization of a nonlinear spin transfer vortex oscillator. Phys. Rev. Lett. 115, 017201 (2015).
  • Chang, H.-C., Cao, X., Mishra, U. K. & York, R. A. Phase noise in coupled oscillators: Theory and experiment. IEEE Trans. Microw. Theory Tech. 45, 604–615 (1997).
  • Slavin, A. & Tiberkevich, V. Nonlinear self-phase-locking effect in an array of current-driven magnetic nanocontacts. Phys. Rev. B 72, 092407 (2005).
  • Tsunegi, S. et al. Self-injection locking of a vortex spin torque oscillator by delayed feedback. Sci. Rep. 6, 26849 (2016).
  • Tsunegi, S. et al. High emission power and Q factor in spin torque vortex oscillator consisting of FeB free layer. Appl. Phys. Exp. 7, 63009 (2014).
  • Csaba, G. et al. in 13th International Workshop on Cellular Nanoscale Networks and their Applications, 1–2Turin (2012) http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6331474&isnumber=6331400.
  • Pufall, M. et al. Physical implementation of coherently-coupled oscillator networks. IEEE J. Explor. Solid-State Comput. Devices Circuits 1, 2329–9231 (2015).
  • Chanthbouala, A. et al. Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities. Nat. Phys. 7, 626–630 (2011).
  • Li, D., Zhou, Y., Hu, B., Åkerman, J. & Zhou, C. Multiple synchronization attractors of serially connected spin-torque nanooscillators. Phys. Rev. B 86, 014418 (2012).
  • Zhou, Y., Persson, J. & Åkerman, J. Intrinsic phase shift between a spin torque oscillator and an alternating current. J. Appl. Phys. 101, 09A510 (2007).
  • Dussaux, A. et al. Field dependence of spin-transfer-induced vortex dynamics in the nonlinear regime. Phys. Rev. B 86, 14402 (2012).
  • Jenkins, A. S. et al. Spin-torque resonant expulsion of the vortex core for an efficient radiofrequency detection scheme. Nat. Nanotechnol. 11, 360–364 (2016).
  • Sankey, J. C. et al. Measurement of the spin-transfer-torque vector in magnetic tunnel junctions. Nat. Phys. 4, 67–71 (2008).
  • Kubota, H. et al. Quantitative measurement of voltage dependence of spin-transfer torque in MgO-based magnetic tunnel junctions. Nat. Phys. 4, 37–41 (2008).