Towards improving the capacity of UiO-66 for antibiotic elimination from contaminated water

  1. Rojas, Sara 24
  2. Torres, Ana 2
  3. Dato, Víctor 2
  4. Salles, Fabrice 5
  5. Ávila, David 1
  6. García-González, Jessica 3
  7. Horcajada, Patricia 2
  1. 1 Department of Inorganic Chemistry, Chemical Sciences Faculty, Complutense University of Madrid, 28040 Madrid, Spain
  2. 2 Advanced Porous Materials Unit, IMDEA Energy, Av. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
  3. 3 Department of Nursing, Faculty of Health and Social Sciences, University of Murcia, Campus de Lorca, 30800 Murcia, Spain
  4. 4 Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
  5. 5 ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
Revista:
Faraday Discussions

ISSN: 1359-6640 1364-5498

Año de publicación: 2021

Volumen: 231

Páginas: 356-370

Tipo: Artículo

DOI: 10.1039/D1FD00019E GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Faraday Discussions

Resumen

Antibiotics are found in natural waters, raising concern about their human and environmental toxicity and the wide occurrence of antibiotic resistant bacteria. The antibiotic resistance crisis is attributed to the overuse and misuse of these medications. Particularly, sulfamethazine (SMT), an antibiotic commonly used in pigs and cattle for the treatment of bacterial diseases, has been detected in the natural environment (soil and water). Among all the technologies developed to combat the deteriorating water quality and control antimicrobial resistance, heterogeneous photocatalysis should be highlighted for the degradation of refractory organic compounds. Here, we described the SMT adsorption and photodegradation capacity of a highly porous and robust zirconium-based MOF UiO-66 under realistic conditions, and its potential recyclability. Further, its SMT removal capacity was improved by functionalizing the MOF porosity (28.5% of SMT adsorption in 24 h for nanoUiO-66-NH2), and nanosizing the MOF (100% SMT photodegradation in only 4 h for nanoUiO-66). Finally, the safety of the formed by-product during SMT photodegradation was confirmed, reinforcing the potential of the application of UiO-66 in water remediation.

Información de financiación

Financiadores

Referencias bibliográficas

  • https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-consumption-europe-2018
  • Ministerio de Sanidad Política Social e Igualdad , Sales of veterinary antimicrobial agents in Spain in 2009 , 2011
  • Ding, (2010), Appl. Microbiol. Biotechnol., 87, pp. 925, 10.1007/s00253-010-2649-5
  • Martínez, (2008), Science, 321, pp. 365, 10.1126/science.1159483
  • Stoll, (2012), Environ. Sci. Technol., 46, pp. 9716, 10.1021/es302020s
  • Carvalho, (2016), Environ. Int., 94, pp. 736, 10.1016/j.envint.2016.06.025
  • Vila-Costa, (2017), Water Res., 115, pp. 309, 10.1016/j.watres.2017.03.007
  • Hruska, (2012), Vet. Med., 57, pp. 1, 10.17221/4969-VETMED
  • Petrovic, (2014), Contrib. Sci., 10, pp. 135
  • Lapworth, (2012), Environ. Pollut., 163, pp. 287, 10.1016/j.envpol.2011.12.034
  • Managaki, (2007), Environ. Sci. Technol., 41, pp. 8004, 10.1021/es0709021
  • Grenni, (2018), Microchem. J., 136, pp. 25, 10.1016/j.microc.2017.02.006
  • Yin, (2018), Chem. Eng. J., 334, pp. 2539, 10.1016/j.cej.2017.11.174
  • Ribeiro, (2015), Environ. Int., 75, pp. 33, 10.1016/j.envint.2014.10.027
  • Ravelli, (2009), Chem. Soc. Rev., 38, pp. 1999, 10.1039/b714786b
  • Bedia, (2019), Catalysts, 9, pp. 52, 10.3390/catal9010052
  • Hernández-Barreto, (2020), Catalysts, 10, pp. 574, 10.3390/catal10050574
  • Pawar, (2018), J. Nanomater., 2018, pp. 1, 10.1155/2018/5953609
  • Li, (1999), Nature, 402, pp. 276, 10.1038/46248
  • Llabrés i Xamena, (2007), J. Phys. Chem. C, 111, pp. 80, 10.1021/jp063600e
  • Zhang, (2019), Chem. Eng. J., 369, pp. 745, 10.1016/j.cej.2019.03.108
  • Peng, (2019), J. Mol. Liq., 274, pp. 632, 10.1016/j.molliq.2018.11.034
  • Abazari, (2019), J. Hazard. Mater., 366, pp. 439, 10.1016/j.jhazmat.2018.12.030
  • Ghosh, (2014), Chem. Commun., 50, pp. 11329, 10.1039/C4CC04945D
  • Cavka, (2008), J. Am. Chem. Soc., 130, pp. 13850, 10.1021/ja8057953
  • Rojas, (2021), Dalton Trans., 50, pp. 2493, 10.1039/D0DT03637D
  • Yang, (2019), ACS Catal., 9, pp. 1779, 10.1021/acscatal.8b04515
  • Grabowska, (2013), J. Phys. Chem. C, 117, pp. 1955, 10.1021/jp3112183
  • DeStefano, (2017), Chem. Mater., 29, pp. 1357, 10.1021/acs.chemmater.6b05115
  • Hasan, (2015), J. Hazard. Mater., 283, pp. 329, 10.1016/j.jhazmat.2014.09.046
  • Jin, (2015), Environ. Sci. Technol., 49, pp. 9168, 10.1021/acs.est.5b02022
  • Ahmed, (2017), Chem. Eng. J., 310, pp. 197, 10.1016/j.cej.2016.10.115
  • Arenas-Vivo, (2021), J. Mater. Chem. A, 10.1039/D1TA02251B
  • Bernini, (2014), J. Mater. Chem. B, 2, pp. 766, 10.1039/C3TB21328E
  • Rojas, (2018), ACS Omega, 3, pp. 2994, 10.1021/acsomega.8b00185
  • Viezbicke, (2015), Phys. Status Solidi B, 252, pp. 1700, 10.1002/pssb.201552007
  • Li, (2019), J. Electrochem. Soc., 166, pp. H3029, 10.1149/2.0051905jes
  • Brienza, (2016), Chemosphere, 148, pp. 473, 10.1016/j.chemosphere.2016.01.070
  • Guo, (2013), Catal. Sci. Technol., 3, pp. 1603, 10.1039/c3cy20811g
  • Fukahori, (2015), J. Environ. Manage., 157, pp. 103, 10.1016/j.jenvman.2015.04.002
  • Ji, (2017), Sci. Total Environ., 593–594, pp. 704, 10.1016/j.scitotenv.2017.03.192
  • Cayman , Safety Data Sheet - Sulfamethazine , 2017
  • Abramoff, (2004), Biophotonics Int., 11, pp. 36
  • D.Frenkel and B.Smit , Understanding Molecular Simulation. From Algorithms to Applications , 2002
  • Rojas, (2018), ACS Omega, 3, pp. 2994, 10.1021/acsomega.8b00185
  • Alby, (2019), ACS Appl. Nano Mater., 2, pp. 497, 10.1021/acsanm.8b02058
  • Ko, (2021), J. Environ. Manage., 277, pp. 1, 10.1016/j.jenvman.2020.111455
  • Rappé, (1991), J. Phys. Chem., 95, pp. 3358, 10.1021/j100161a070
  • Rappé, (1992), J. Am. Chem. Soc., 114, pp. 10024, 10.1021/ja00051a040