Ultrafast reproducible synthesis of a Ag-nanocluster@MOF composite and its superior visible-photocatalytic activity in batch and in continuous flow

  1. Arenas-Vivo, Ana 5678
  2. Rojas, Sara 5678
  3. Ocaña, Iván 5678
  4. Torres, Ana 5678
  5. Liras, Marta 67813
  6. Salles, Fabrice 1415161718
  7. Arenas-Esteban, Daniel 1234
  8. Bals, Sara 1234
  9. Ávila, David 89101112
  10. Horcajada, Patricia 5678
  1. 1 EMAT and NANOlab Center of Excellence
  2. 2 Univ. of Antwerp
  3. 3 Antwerp 2020
  4. 4 Belgium
  5. 5 Advanced Porous Materials Unit
  6. 6 Instituto IMDEA Energía
    info

    Instituto IMDEA Energía

    Móstoles, España

    ROR https://ror.org/002tzev63

  7. 7 28935 Móstoles-Madrid
  8. 8 Spain
  9. 9 Department of Inorganic Chemistry
  10. 10 Chemical Sciences Faculty
  11. 11 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  12. 12 28040 Madrid
  13. 13 Photoactivated Process Unit
  14. 14 Institut Charles Gerhardt
    info

    Institut Charles Gerhardt

    Montpellier, Francia

    ROR https://ror.org/028wq3277

  15. 15 Univ. Montpellier
  16. 16 CNRS
  17. 17 ENSCM
  18. 18 Montpellier
Revista:
Journal of Materials Chemistry A

ISSN: 2050-7488 2050-7496

Año de publicación: 2021

Volumen: 9

Número: 28

Páginas: 15704-15713

Tipo: Artículo

DOI: 10.1039/D1TA02251B GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of Materials Chemistry A

Resumen

The (photo)catalytic properties of metal–organic frameworks (MOFs) can be enhanced by post-synthetic inclusion of metallic species in their porosity. Due to their extraordinarily high surface area and well defined porous structure, MOFs can be used for the stabilization of metal nanoparticles with adjustable size within their porosity. Originally, we present here an optimized ultrafast photoreduction protocol for the in situ synthesis of tiny and monodisperse silver nanoclusters (AgNCs) homogeneously supported on a photoactive porous titanium carboxylate MIL-125-NH2 MOF. The strong metal–framework interaction between –NH2 and Ag atoms influences the AgNC growth, leading to the surfactant-free efficient catalyst AgNC@MIL-125-NH2 with improved visible light absorption. The potential use of AgNC@MIL-125-NH2 was further tested in challenging applications: (i) the photodegradation of the emerging organic contaminants (EOCs) methylene blue (MB-dye) and sulfamethazine (SMT-antibiotic) in water treatment, and (ii) the catalytic hydrogenation of p-nitroaniline (4-NA) to p-phenylenediamine (PPD) with industrial interest. It is noteworthy that compared with the pristine MIL-125-NH2, the composite presents an improved catalytic activity and stability, being able to photodegrade 92% of MB in 60 min and 96% of SMT in 30 min, and transform 100% of 4-NA to PPD in 30 min. Aside from these very good results, this study describes for the first time the use of a MOF in a visible light continuous flow reactor for wastewater treatment. With only 10 mg of AgNC@MIL-125-NH2, high SMT removal efficiency over 70% is maintained after >2 h under water flow conditions found in real wastewater treatment plants, signaling a future real application of MOFs in water remediation

Información de financiación

Financiadores

Referencias bibliográficas

  • Zandaryaa, (2011), A World of Science, 9, pp. 18
  • Ali, (2012), J. Environ. Manage., 113, pp. 170, 10.1016/j.jenvman.2012.08.028
  • Lapworth, (2012), Environ. Pollut., 163, pp. 287, 10.1016/j.envpol.2011.12.034
  • Quesada, (2019), Chemosphere, 222, pp. 766, 10.1016/j.chemosphere.2019.02.009
  • Ebele, (2017), Emerg. Contam., 3, pp. 1, 10.1016/j.emcon.2016.12.004
  • Ibáñez, (2013), J. Hazard. Mater., 260, pp. 389, 10.1016/j.jhazmat.2013.05.023
  • Acero, (2013), Chem. Eng. J., 219, pp. 43, 10.1016/j.cej.2012.12.067
  • Serna-Galvis, (2019), Water Res., 154, pp. 349, 10.1016/j.watres.2019.01.045
  • Tran, (2013), Bioresour. Technol., 146, pp. 721, 10.1016/j.biortech.2013.07.083
  • Klamerth, (2009), Catal. Today, 144, pp. 124, 10.1016/j.cattod.2009.01.024
  • Wilhelm, (2017), Aquat. Toxicol., 192, pp. 184, 10.1016/j.aquatox.2017.09.017
  • Wang, (2014), Energy Environ. Sci., 7, pp. 2831, 10.1039/C4EE01299B
  • Li, (1999), Nature, 402, pp. 276, 10.1038/46248
  • Farha, (2012), J. Am. Chem. Soc., 134, pp. 15016, 10.1021/ja3055639
  • Hönicke, (2018), Angew. Chem., Int. Ed., 57, pp. 13780, 10.1002/anie.201808240
  • Silva, (2015), Chem. Soc. Rev., 44, pp. 6774, 10.1039/C5CS00307E
  • U.-H. Lee , A. H.Valekar , Y. K.Hwang and J.-S.Chang , in The Chemistry of Metal–Organic Frameworks: Synthesis, Characterization, and Applications , 2016 , pp. 551–572
  • Hasan, (2012), J. Hazard. Mater., 209–210, pp. 151, 10.1016/j.jhazmat.2012.01.005
  • Zhang, (2020), Chemosphere, 242, pp. 125144, 10.1016/j.chemosphere.2019.125144
  • Rojas, (2021), Dalton Trans., 50, pp. 2493, 10.1039/D0DT03637D
  • Grabowska, (2013), J. Phys. Chem. C, 117, pp. 1955, 10.1021/jp3112183
  • Yu, (2017), CrystEngComm, 19, pp. 4126, 10.1039/C7CE00398F
  • Liu, (2019), Coord. Chem. Rev., 388, pp. 63, 10.1016/j.ccr.2019.02.031
  • Liu, (2017), Appl. Catal., B, 209, pp. 506, 10.1016/j.apcatb.2017.02.073
  • Mahmoodi, (2019), J. Hazard. Mater., 378, pp. 120741, 10.1016/j.jhazmat.2019.06.018
  • Joshi, (2015), J. Phys. Chem. Lett., 6, pp. 3023, 10.1021/acs.jpclett.5b00934
  • Islam, (2016), New J. Chem., 40, pp. 6745, 10.1039/C6NJ00296J
  • Jiang, (2020), Angew. Chem., Int. Ed., 59, pp. 23112, 10.1002/anie.202011495
  • Wang, (2015), Acc. Chem. Res., 48, pp. 1570, 10.1021/acs.accounts.5b00007
  • Setyawati, (2014), Biomaterials, 35, pp. 6707, 10.1016/j.biomaterials.2014.05.007
  • Soares, (2016), Life Sci., 145, pp. 247, 10.1016/j.lfs.2015.12.046
  • Islam, (2016), New J. Chem., 40, pp. 6745, 10.1039/C6NJ00296J
  • Houk, (2009), Nano Lett., 9, pp. 3413, 10.1021/nl901397k
  • Su, (2019), Microporous Mesoporous Mater., 275, pp. 152, 10.1016/j.micromeso.2018.08.026
  • Han, (2018), RSC Adv., 8, pp. 22748, 10.1039/C8RA03632B
  • Yuan, (2016), Appl. Organomet. Chem., 30, pp. 289, 10.1002/aoc.3430
  • AZO , https://www.azom.com/article.aspx?ArticleID=16650
  • INSCX , Global Sales of Nanomaterials , https://inscx.com/shop/product/titanium-metal-organic-framework-ti-nh2-mil-125-99-30-40μm/
  • Dan-Hardi, (2009), J. Am. Chem. Soc., 131, pp. 10857, 10.1021/ja903726m
  • Arenas-Vivo, (2019), Acta Biomater., 97, pp. 490, 10.1016/j.actbio.2019.08.011
  • Nasalevich, (2015), Energy Environ. Sci., 8, pp. 364, 10.1039/C4EE02853H
  • De Miguel, (2012), ChemPhysChem, 13, pp. 3651, 10.1002/cphc.201200411
  • Askari, (2020), Chemosphere, 251, pp. 126453, 10.1016/j.chemosphere.2020.126453
  • Mosleh, (2017), Ultrason. Sonochem., 35, pp. 449, 10.1016/j.ultsonch.2016.10.025
  • Huang, (2019), Appl. Catal., B, 259, pp. 118106, 10.1016/j.apcatb.2019.118106
  • Bahmani, (2020), J. Hazard. Mater., 393, pp. 122360, 10.1016/j.jhazmat.2020.122360
  • Managaki, (2007), Environ. Sci. Technol., 41, pp. 8004, 10.1021/es0709021
  • Petrovic, (2014), Contrib. sci., 10, pp. 135
  • Poirier, (1999), Regul. Toxicol. Pharmacol., 30, pp. 217, 10.1006/rtph.1999.1348
  • Fiege, (2012), Ullmann's Encycl. Ind. Chem., 26, pp. 617
  • Zhu, (2020), Chin. Chem. Lett., 31, pp. 1961, 10.1016/j.cclet.2020.01.017
  • Maretti, (2009), J. Am. Chem. Soc., 131, pp. 13972, 10.1021/ja900201k
  • García-Bosch, (2016), RSC Adv., 6, pp. 67643, 10.1039/C6RA12024E
  • Meilikhov, (2010), Eur. J. Inorg. Chem., pp. 3701, 10.1002/ejic.201000473
  • Viezbicke, (2015), Phys. Status Solidi, 252, pp. 1700, 10.1002/pssb.201552007
  • Nibret, (2019), SSRN Electronic Journal, 26–28, pp. 1959
  • Collado, (2018), Nat. Commun., 9, pp. 1, 10.1038/s41467-018-07397-2
  • Nair, (2010), Fuel, 89, pp. 3218, 10.1016/j.fuel.2010.05.006
  • Marcinkowski, (2014), New J. Chem., 38, pp. 604, 10.1039/C3NJ01187A
  • Te Hsieh, (2009), Sep. Purif. Technol., 67, pp. 312, 10.1016/j.seppur.2009.03.041
  • Gómez-Avilés, (2020), Catalysts, 10, pp. 603, 10.3390/catal10060603
  • Xiao, (2016), Angew. Chem., 128, pp. 9535, 10.1002/ange.201603990
  • C. R. Henry , C.Chapon , S.Giorgio and C.Goyhenex , in Chemisorption and Reactivity on Supported Clusters and Thin Films , Springer , Netherlands , 1997 , pp. 117–152
  • Lewis, (2006), Chem. Commun., pp. 1433, 10.1039/b518091k
  • ichi Shimizu, (2010), J. Catal., 270, pp. 86, 10.1016/j.jcat.2009.12.009
  • Lamoth, (2019), ACS Appl. Nano Mater., 2, pp. 2909, 10.1021/acsanm.9b00344
  • F. Çeçen and O.Aktas , Activated carbon for water and wastewater treatment: integration of adsorption and biological treatment , 2011
  • Da Silva, (2015), PLoS One, 10, pp. 1
  • Mirsoleimani-Azizi, (2018), J. Environ. Chem. Eng., 6, pp. 4653, 10.1016/j.jece.2018.06.067
  • Jia, (2017), Chem. Eng. J., 307, pp. 283, 10.1016/j.cej.2016.08.090
  • Ren, (2018), Chem. Eng. J., 348, pp. 389, 10.1016/j.cej.2018.04.203
  • Wang, (2019), Nat. Commun., pp. 1
  • Guo, (2019), Environ. Sci. Technol., 53, pp. 2705, 10.1021/acs.est.8b06564
  • Patel, (2019), Chem. Rev., 119, pp. 3510, 10.1021/acs.chemrev.8b00299
  • Thomas, (1944), J. Am. Chem. Soc., 66, pp. 1664, 10.1021/ja01238a017
  • Li, (2020), Materials, 13, pp. 16
  • Sotelo, (2012), Ind. Eng. Chem. Res., 51, pp. 5045, 10.1021/ie300334q
  • Dauthal, (2015), Korean J. Chem. Eng., 32, pp. 837, 10.1007/s11814-014-0277-y
  • Zhang, (2019), ACS Omega, 4, pp. 483, 10.1021/acsomega.8b03051
  • Islam, (2016), New J. Chem., 40, pp. 6745, 10.1039/C6NJ00296J