Binding events through the mutual synchronization of spintronic nano-neurons

  1. Romera, Miguel 123
  2. Talatchian, Philippe
  3. Tsunegi, Sumito
  4. Yakushiji, Kay
  5. Fukushima, Akio
  6. Kubota, Hitoshi
  7. Yuasa, Shinji
  8. Cros, Vincent
  9. Bortolotti, Paolo
  10. Ernoult, Maxence
  11. Querlioz, Damien
  12. Grollier, Julie
  1. 1 Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
  2. 2 GFMC, Departamento de Física de Materiales, UniversidadComplutense de Madrid, 28040 Madrid, Spain
  3. 3 Unidad Asociada UCM/CSIC, Laboratorio de Heteroestructuras con Aplicación en Espintrónica, 28049Madrid, Spain.
Revista:
Nature Communications

ISSN: 2041-1723

Año de publicación: 2022

Volumen: 13

Número: 1

Páginas: 883-1-883-7

Tipo: Artículo

DOI: 10.1038/S41467-022-28159-1 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Nature Communications

Referencias bibliográficas

  • Golonzka, O. et al. MRAM as embedded non-volatile memory solution for 22FFL FinFET technology. in 2018 IEEE International Electron Devices Meeting (IEDM) 18.1.1–18.1.4 (2018).
  • Macià, F., Kent, A. D. & Hoppensteadt, F. C. Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation. Nanotechnology 22, 095301 (2011).
  • Pufall, M. R. et al. Physical implementation of coherently coupled oscillator networks. IEEE J. Explor. Solid-State Comput. Devices Circuits 1, 76–84 (2015).
  • Grollier, J., Querlioz, D. & Stiles, M. D. Spintronic nanodevices for bioinspired computing. Proc. IEEE 104, 2024–2039 (2016).
  • Cai, J. et al. Sparse neuromorphic computing based on spin-torque diodes. Appl. Phys. Lett. 114, 192402 (2019).
  • Csaba, G. & Porod, W. Coupled oscillators for computing: a review and perspective. Appl. Phys. Rev. BIE2019, 011302 (2020).
  • Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017).
  • Tsunegi, S. et al. Physical reservoir computing based on spin torque oscillator with forced synchronization. Appl. Phys. Lett. 114, 164101 (2019).
  • Romera, M. et al. Vowel recognition with four coupled spin-torque nano-oscillators. Nature 563, 230 (2018).
  • Slavin, A. & Tiberkevich, V. Nonlinear auto-oscillator theory of microwave generation by spin-polarized current. IEEE Trans. Magn. 45, 1875–1918 (2009).
  • Houshang, A. et al. Spin-wave-beam driven synchronization of nanocontact spin-torque oscillators. Nat. Nanotechnol. 11, 280–286 (2016).
  • Awad, A. A. et al. Long-range mutual synchronization of spin Hall nano-oscillators. Nat. Phys. 13, 292–299 (2017).
  • Locatelli, N. et al. Efficient synchronization of dipolarly coupled vortex-based spin transfer nano-oscillators. Sci. Rep. 5, 17039 (2015).
  • Kaka, S. et al. Mutual phase-locking of microwave spin torque nano-oscillators. Nature 437, 389–392 (2005).
  • Mancoff, F. B., Rizzo, N. D., Engel, B. N. & Tehrani, S. Phase-locking in double-point-contact spin-transfer devices. Nature 437, 393–395 (2005).
  • Quinsat, M. et al. Amplitude and phase noise of magnetic tunnel junction oscillators. Appl. Phys. Lett. 97, 182507 (2010).
  • Vassilieva, E., Pinto, G., Barros, J. Ade & Suppes, P. Learning Pattern Recognition Through Quasi-Synchronization of Phase Oscillators. IEEE Trans. Neural Netw. 22, 84–95 (2011).
  • Uhlhaas, P. et al. Neural synchrony in cortical networks: history, concept and current status. Front. Integr. Neurosci. 3, 17 (2009).
  • Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).
  • Hopfield, J. J. & Brody, C. D. What is a moment? “Cortical” sensory integration over a brief interval. Proc. Natl Acad. Sci. USA 97, 13919–13924 (2000).
  • Hopfield, J. J. & Brody, C. D. What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration. Proc. Natl Acad. Sci. USA 98, 1282–1287 (2001).
  • Ignatov, M., Ziegler, M., Hansen, M. & Kohlstedt, H. Memristive stochastic plasticity enables mimicking of neural synchrony: Memristive circuit emulates an optical illusion. Sci. Adv. 3, e1700849 (2017).
  • Nikonov, D. E. et al. Convolution inference via synchronization of a coupled CMOS oscillator array. IEEE J. Explor. Solid-State Comput. Devices Circuits 6, 170–176 (2020).
  • Nikonov, D. E. et al. A coupled CMOS oscillator array for 8 ns and 55 pJ inference in convolutional neural networks. Preprint at https://arxiv.org/abs/1910.11803 (2019).
  • Zahedinejad, M. et al. Two-dimensional mutually synchronized spin Hall nano-oscillator arrays for neuromorphic computing. Nat. Nanotechnol. 15, 47–52 (2020).
  • Manfrini, M. et al. Agility of vortex-based nanocontact spin torque oscillators. Appl. Phys. Lett. 95, 192507 (2009).
  • Ruiz-Calaforra, A. et al. Frequency shift keying by current modulation in a MTJ-based STNO with high data rate. Appl. Phys. Lett. 111, 082401 (2017).
  • Dussaux, A. et al. Large microwave generation from current-driven magnetic vortex oscillators in magnetic tunnel junctions. Nat. Commun. 1, 8 (2010).
  • Talatchian, P. et al. Designing large arrays of interacting spin-torque nano-oscillators for microwave information processing. Phys. Rev. Appl. 13, 024073 (2020).
  • Lebrun, R. et al. Mutual synchronization of spin torque nano-oscillators through a long-range and tunable electrical coupling scheme. Nat. Commun. 8, 15825 (2017).