Beyond the gyrotropic motion: Dynamic C-state in vortex spin torque oscillators

  1. Wittrock, Steffen 1
  2. Talatchian, Philippe 1
  3. Romera, Miguel 1
  4. Menshawy, Samh 1
  5. Jotta Garcia, Mafalda 1
  6. Cyrille, Marie-Claire 4
  7. Ferreira, Ricardo 2
  8. Lebrun, Romain 1
  9. Bortolotti, Paolo 1
  10. Ebels, Ursula 3
  11. Grollier, Julie 1
  12. Cros, Vincent 1
  1. 1 Unité Mixte de Physique CNRS, Thales, Université Paris-Saclay 1 , 1 Avenue Augustin Fresnel, 91767 Palaiseau, France
  2. 2 International Iberian Nanotechnology Laboratory (INL) 3 , 471531 Braga, Portugal
  3. 3 Université Grenoble Alpes, CEA, INAC-SPINTEC, CNRS, SPINTEC 4 , 38000 Grenoble, France
  4. 4 Université Grenoble Alpes, CEA-LETI, MINATEC-Campus 2 , 38000 Grenoble, France
Aldizkaria:
Applied Physics Letters

ISSN: 0003-6951 1077-3118

Argitalpen urtea: 2021

Alea: 118

Zenbakia: 1

Mota: Artikulua

DOI: 10.1063/5.0029083 GOOGLE SCHOLAR lock_openSarbide irekia editor

Beste argitalpen batzuk: Applied Physics Letters

Laburpena

In the present study, we investigate a dynamical mode beyond the gyrotropic (G) motion of a magnetic vortex core in a confined magnetic disk of a nano-pillar spin torque nano-oscillator (STNO). It is characterized by the in-plane circular precession associated with a C-shaped magnetization distribution. We show a transition between G- and C-state modes, which is found to be stochastic in a current-controllable range. Supporting our experimental findings with micromagnetic simulations, we believe that the results provide further opportunities for the dynamic and stochastic control of STNOs, which could be interesting to be implemented, for example, in neuromorphic networks.

Finantzaketari buruzko informazioa

Finantzatzaile

Erreferentzia bibliografikoak

  • (2014), Nat. Mater., 13, pp. 11, 10.1038/nmat3823
  • (2017)
  • (2012), IEEE Trans. Magn., 48, pp. 1758, 10.1109/TMAG.2011.2173560
  • (2015), Sci. Rep., 4, pp. 5486, 10.1038/srep05486
  • (2017), Appl. Phys. Lett., 111, pp. 082401, 10.1063/1.4994892
  • (2017)
  • (2019), Phys. Rev. Appl., 11, pp. 014022, 10.1103/PhysRevApplied.11.014022
  • (2016), Nat. Nanotechnol., 11, pp. 360, 10.1038/nnano.2015.295
  • (2017), IEEE Trans. Magn., 53, pp. 1, 10.1109/TMAG.2017.2694847
  • (2017), Nature, 547, pp. 428, 10.1038/nature23011
  • (2018), Nature, 563, pp. 230, 10.1038/s41586-018-0632-y
  • (2007), Nat. Phys., 3, pp. 498, 10.1038/nphys619
  • (2010), Nat. Commun., 1, pp. 8, 10.1038/ncomms1006
  • (2002), Phys. Rev. B, 65, pp. 060402(R), 10.1103/PhysRevB.65.060402
  • (2005), Phys. Rev. B, 71, pp. 144407, 10.1103/PhysRevB.71.144407
  • (2005), Phys. Rev. Lett., 94, pp. 027205, 10.1103/PhysRevLett.94.027205
  • (2016), Phys. Rev. B, 93, pp. 184427, 10.1103/PhysRevB.93.184427
  • (1973), Phys. Rev. Lett., 30, pp. 230, 10.1103/PhysRevLett.30.230
  • (2008), Phys. Rev. Lett., 100, pp. 247201, 10.1103/PhysRevLett.100.247201
  • (2009), J. Appl. Phys., 105, pp. 013906, 10.1063/1.3054305
  • (2010), J. Appl. Phys., 108, pp. 123914, 10.1063/1.3524222
  • (2014), Appl. Phys. Lett., 105, pp. 052407, 10.1063/1.4892077
  • (2019), Sci. Rep., 9, pp. 15661, 10.1038/s41598-019-52236-z
  • (2016), Proc. IEEE, 104, pp. 2024, 10.1109/JPROC.2016.2597152
  • (2019), IEEE J. Explor. Solid-State Comput. Devices Circuits, 5, pp. 43, 10.1109/JXCDC.2019.2911046
  • (2009), IEEE Trans. Magn., 45, pp. 1875, 10.1109/TMAG.2008.2009935
  • (2019), Phys. Rev. B, 99, pp. 235135, 10.1103/PhysRevB.99.235135
  • (2020), Sci. Rep., 10, pp. 13116, 10.1038/s41598-020-70076-0
  • (2014), AIP Adv., 4, pp. 107133, 10.1063/1.4899186
  • (2008), J. Magn. Magn. Mater., 320, pp. 1190, 10.1016/j.jmmm.2007.12.019
  • (2012), Phys. Rev. B, 86, pp. 014402, 10.1103/PhysRevB.86.014402
  • (2011), Nat. Phys., 7, pp. 626, 10.1038/nphys1968