Low-Energy Truly Random Number Generation with Superparamagnetic Tunnel Junctions for Unconventional Computing
- Vodenicarevic, D.
- Locatelli, N.
- Mizrahi, A.
- Friedman, J. S.
- Vincent, A. F.
- Romera, M. 1
- Fukushima, A.
- Yakushiji, K.
- Kubota, H.
- Yuasa, S.
- Tiwari, S.
- Grollier, J.
- Querlioz, D.
- 1 Unité Mixte de Physique CNRS, Thales, Université Paris-Sud, Université Paris-Saclay, 91767 Palaiseau, France
ISSN: 2331-7019
Año de publicación: 2017
Volumen: 8
Número: 5
Tipo: Artículo
Otras publicaciones en: Physical Review Applied
Resumen
Low-energy random number generation is critical for many emerging computing schemes proposed to complement or replace von Neumann architectures. However, current random number generators are always associated with an energy cost that is prohibitive for these computing schemes. We introduce random number bit generation based on specific nanodevices: superparamagnetic tunnel junctions. We experimentally demonstrate high-quality random bit generation that represents an orders-of-magnitude improvement in energy efficiency over current solutions. We show that the random generation speed improves with nanodevice scaling, and we investigate the impact of temperature, magnetic field, and cross talk. Finally, we show how alternative computing schemes can be implemented using superparamagentic tunnel junctions as random number generators. These results open the way for fabricating efficient hardware computing devices leveraging stochasticity, and they highlight an alternative use for emerging nanodevices
Información de financiación
Financiadores
Referencias bibliográficas
- R. Courtland, (2016), IEEE Spectrum, 53, pp. 9
- A. Alaghi, (2013), ACM Trans. Embedded Comput. Syst., 12, pp. 92, 10.1145/2465787.2465794
- 10.1109/TCSI.2016.2546064
- 10.1371/journal.pone.0124176
- 10.1109/JPROC.2014.2310713
- C. Winstead, (2005), Proceedings of the IEEE International Symposium on Information Theory (ISIT 2005), Adelaide, Australia, 2005
- 10.1126/science.1254642
- 10.1109/JPROC.2014.2310593
- 10.1109/TED.2013.2263000
- 10.1109/12.954505
- 10.1371/journal.pone.0124176
- 10.1109/LCOMM.2006.060570
- 10.1109/JSSC.2012.2217631
- 10.1109/JPROC.2014.2387353
- 10.1109/LED.2012.2199734
- 10.1109/JETCAS.2015.2426492
- Y. Wang, (2015), Proceedings of the 25th Edition on Great Lakes Symposium on VLSI (GLSVLSI ’15), Pittsburgh, 2015
- 10.1109/JETCAS.2016.2547780
- E. Piccinini, (2017), IEEE Trans. Electron Devices, PP, pp. 1
- X. Fong, (2014), Proceedings of the 72nd Device Research Conference, Santa Barbara, 2014
- 10.7567/APEX.7.083001
- W. H. Choi, (2014), Proceedings of the 2014 IEEE International Electron Devices Meeting, San Francisco, 2014
- S. Oosawa, (2015), 2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS), Grenoble, 2015
- 10.1109/TMAG.2015.2478398
- 10.1109/LMAG.2015.2496548
- A. Sengupta, (2016), Proceedings of the 74th Annual Device Research Conference (DRC), Newark, DE, 2016
- 10.1063/1.4978320
- K. Yang, (2014), Proceedings of the 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, 2014
- D. Apalkov, (2013), J. Emerging Technol. Comput. Syst., 9, pp. 13
- 10.1016/j.jmmm.2007.12.008
- 10.1103/PhysRevB.84.064439
- 10.1038/srep30535
- 10.1109/TED.2014.2372475
- 10.1063/1.4892924
- 10.1143/JJAP.45.L1057
- 10.1007/BF02579167
- J. Soto, (1999), Proceedings of the 22nd National Information Systems Security Conference, Arlington, VA, 1999
- A. Mizrahi, (2015), Proceedings of the IEEE International Magnetics Conference (INTERMAG 2015), Beijing, 2015
- H. Sato, (2013), Proceedings of the 2013 IEEE International Electron Devices Meeting, Washington, DC, 2013
- 10.1147/rd.501.0025
- 10.1109/TMAG.2009.2024325
- 10.1103/PhysRevE.60.284
- A. Coninx, (2016), Proceedings of the IEEE International Conference on Rebooting Computing (ICRC 2016), San Diego, 2016
- 10.1109/TETC.2016.2609926