Enhanced stability in spin transfer nanopillars due to a Fe/Gd/Fe trilayer

  1. Romera, Miguel 4
  2. Grollier, Julie 2
  3. Collin, Sophie 2
  4. Devolder, Thibaut 3
  5. Cros, Vincent 2
  6. Muñoz, Manuel 1
  7. Prieto, José L. 4
  1. 1 IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC) 4 , Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid, Spain
  2. 2 Unité Mixte de Physique CNRS/Thales and Université Paris-Sud 2 , 1 avenue A. Fresnel, 91767 Palaiseau, France
  3. 3 Institut d'Electronique Fondamentale, Univ. Paris-Sud 3 , 91405 Orsay, France and UMR 8622, CNRS, 91405 Orsay, France
  4. 4 Instituto de Sistemas Optoelectrónicos y Microtecnología (ISOM), Universidad Politécnica de Madrid 1 , Avda. Complutense s/n, E-28040 Madrid, Spain
Revista:
Applied Physics Letters

ISSN: 0003-6951 1077-3118

Año de publicación: 2013

Volumen: 103

Número: 12

Tipo: Artículo

DOI: 10.1063/1.4821510 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Applied Physics Letters

Resumen

A sharp antiferromagnetic boundary of Fe/Gd is found to affect notoriously the critical current for spin transfer torque (STT). Transport measurements performed on nano-patterned spin valves show that when a Fe/Gd/Fe is added as a top layer, the effect of spin transfer on the free layer is dramatically reduced. The critical current increases up to one order of magnitude at 10 K and five times at room temperature. We show that this increase cannot be fully explained by the macrospin approximation and we argue that it is due to a torque at the Gd/Fe interface that opposes the STT in the free layer.

Referencias bibliográficas

  • (1993), J. Phys.: Condens. Matter, 5, pp. 3727, 10.1088/0953-8984/5/23/003
  • (2000), Europhys. Lett., 49, pp. 528, 10.1209/epl/i2000-00182-9
  • (2006), Phys. Rev. B, 74, pp. 024411, 10.1103/PhysRevB.74.024411
  • (1996), Phys. Rev. B, 53, pp. 5082, 10.1103/PhysRevB.53.5082
  • (2005), Phys. Rev. Lett., 95, pp. 047202, 10.1103/PhysRevLett.95.047202
  • (2003), Appl. Phys. Lett., 82, pp. 1254, 10.1063/1.1544642
  • (2009), Phys. Rev. Lett., 102, pp. 257602, 10.1103/PhysRevLett.102.257602
  • (2008), Appl. Phys. Lett., 93, pp. 103506, 10.1063/1.2978958
  • (2004), IEEE Trans. Magn., 40, pp. 182, 10.1109/TMAG.2003.821202
  • (2010), Appl. Phys. Lett., 97, pp. 072507, 10.1063/1.3481074
  • (2011), J. Appl. Phys., 110, pp. 033902, 10.1063/1.3610517
  • (2008), Phys. Rev. Lett., 101, pp. 247205, 10.1103/PhysRevLett.101.247205
  • (1991), Phys. Rev. B, 44, pp. 8342, 10.1103/PhysRevB.44.8342
  • (2011), Phys. Rev. B, 84, pp. 094456, 10.1103/PhysRevB.84.094456
  • (2001), Phys. Rev. Lett., 87, pp. 207201, 10.1103/PhysRevLett.87.207201
  • (1996), J. Magn. Magn. Mater., 159, pp. L1, 10.1016/0304-8853(96)00062-5
  • (2003), Appl. Phys. Lett., 83, pp. 93, 10.1063/1.1588734
  • (2004), Appl. Phys. Lett., 84, pp. 4257, 10.1063/1.1757638
  • (2004), Appl. Phys. Lett., 85, pp. 4681, 10.1063/1.1819516
  • (2008), Appl. Phys. Lett., 93, pp. 102509, 10.1063/1.2978328
  • (2009), J. Appl. Phys., 106, pp. 023922, 10.1063/1.3173580
  • (1998), Science, 282, pp. 85, 10.1126/science.282.5386.85
  • (1999), Handbook of Ferromagnetic Materials, pp. 1
  • Ziese, (2001), Spin Electronics, pp. 279, 10.1007/3-540-45258-3