Glaucoma: from pathogenic mechanisms to retinal glial cell response to damage

  1. Juan José Salazar Corral 1
  2. José Fernández Albarral 2
  3. ANA ISABEL RAMÍREZ SEBASTIÁN 1
  4. MARÍA ROSA DE HOZ MONTAÑANA 1
  5. Jose A. Matamoros 12
  6. ELENA SALOBRAR GARCÍA MARTÍN 1
  7. Lorena Elvira-Hurtado 2
  8. INÉS LÓPEZ CUENCA 2
  9. LIDIA SÁNCHEZ-PUEBLA FERNÁNDEZ 2
  10. JOSÉ MANUEL RAMÍREZ SEBASTIÁN 2
  1. 1 Departamento de Inmunología, Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, España
  2. 2 Instituto de Investigaciones Oftalmológicas Ramón Castroviejo
Revista:
Frontiers in Cellular Neuroscienc

ISSN: 1662-5102

Año de publicación: 2024

Volumen: 18

Tipo: Artículo

DOI: 10.3389/FNCEL.2024.1354569 SCOPUS: 2-s2.0-85184412042 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Frontiers in Cellular Neuroscienc

Resumen

Glaucoma is a neurodegenerative disease of the retina characterized by the irreversible loss of retinal ganglion cells (RGCs) leading to visual loss. Degeneration of RGCs and loss of their axons, as well as damage and remodeling of the lamina cribrosa are the main events in the pathogenesis of glaucoma. Different molecular pathways are involved in RGC death, which are triggered and exacerbated as a consequence of a number of risk factors such as elevated intraocular pressure (IOP), age, ocular biomechanics, or low ocular perfusion pressure. Increased IOP is one of the most important risk factors associated with this pathology and the only one for which treatment is currently available, nevertheless, on many cases the progression of the disease continues, despite IOP control. Thus, the IOP elevation is not the only trigger of glaucomatous damage, showing the evidence that other factors can induce RGCs death in this pathology, would be involved in the advance of glaucomatous neurodegeneration. The underlying mechanisms driving the neurodegenerative process in glaucoma include ischemia/hypoxia, mitochondrial dysfunction, oxidative stress and neuroinflammation. In glaucoma, like as other neurodegenerative disorders, the immune system is involved and immunoregulation is conducted mainly by glial cells, microglia, astrocytes, and Müller cells. The increase in IOP produces the activation of glial cells in the retinal tissue. Chronic activation of glial cells in glaucoma may provoke a proinflammatory state at the retinal level inducing blood retinal barrier disruption and RGCs death. The modulation of the immune response in glaucoma as well as the activation of glial cells constitute an interesting new approach in the treatment of glaucoma.

Información de financiación

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. Santander-Complutense University of Madrid Research Projects (PR75/18-21560). JF-A was currently supported by a Predoctoral Fellowship (FPU17/01023) from the Spanish Ministry of Science, Innovation, and Universities; LS-P was currently supported by a Predoctoral Fellowship (CT82/20-CT83/20) and JM was currently supported by a Predoctoral Fellowship (CT58/21-CT59/21) from the Complutense University of Madrid.

Financiadores

Referencias bibliográficas

  • Abiega O. Beccari S. Diaz-Aparicio I. Nadjar A. Layé S. Leyrolle Q. et al. (2016). Neuronal hyperactivity disturbs ATP microgradients, impairs microglial motility, and reduces phagocytic receptor expression triggering apoptosis/microglial phagocytosis uncoupling. PLoS Biol. 14:e1002466. 10.1371/JOURNAL.PBIO.1002466 27228556
  • Ahmed F. Brown K. Stephan D. Morrison J. Johnson E. Tomarev S. (2004). Microarray analysis of changes in mRNA levels in the rat retina after experimental elevation of intraocular pressure. Invest. Ophthalmol. Vis. Sci. 45 1247–1258.
  • Ai L. Yuan M. Neufeld A. (2007). Age-related changes in neuronal susceptibility to damage: comparison of the retinal ganglion cells of young and old mice before and after optic nerve crush. Ann. N Y Acad. Sci. 1097 64–66. 10.1196/annals.1379.027 17413012
  • Albon J. Purslow P. Karwatowski W. Easty D. (2000). Age related compliance of the lamina cribrosa in human eyes. Br. J. Ophthalmol. 84 318–323.
  • Alexander J. Anderson A. Barnum S. Stevens B. Tenner A. (2008). The complement cascade: Yin-Yang in neuroinflammation - Neuro-protection and -degeneration. J. Neurochem. 107 1169–1187. 10.1111/j.1471-4159.2008.05668.x 18786171
  • Almasieh M. Wilson A. Morquette B. Cueva Vargas J. di Polo A. (2012). The molecular basis of retinal ganglion cell death in glaucoma. Prog. Retin. Eye Res. 31 152–181.
  • Aloisi F. Ria F. Adorini L. (2000a). Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. Immunol. Today 21 141–147. 10.1016/s0167-5699(99)01512-1 10689302
  • Aloisi F. Serafini B. Adorini L. (2000b). Glia-T cell dialogue. J. Neuroimmunol. 107 111–117. 10.1016/s0165-5728(00)00231-9 10854644
  • Alqawlaq S. Flanagan J. Sivak J. (2019). All roads lead to glaucoma: induced retinal injury cascades contribute to a common neurodegenerative outcome. Exp. Eye Res. 183 88–97. 10.1016/j.exer.2018.11.005 30447198
  • Arai Y. Martin-Ruiz C. Takayama M. Abe Y. Takebayashi T. Koyasu S. et al. (2015). Inflammation, but not telomere length, predicts successful ageing at extreme old age: a longitudinal study of semi-supercentenarians. EBioMedicine 2 1549–1558.
  • Argaw A. Asp L. Zhang J. Navrazhina K. Pham T. Mariani J. et al. (2012). Astrocyte-derived VEGF-a drives blood-brain barrier disruption in CNS inflammatory disease. J. Clin. Invest. 122 2454–2468. 10.1172/JCI60842 22653056
  • Aung T. Rezaie T. Okada K. Viswanathan A. Child A. Brice G. et al. (2005). Clinical features and course of patients with glaucoma with the E50K mutation in the optineurin gene. Invest. Ophthalmol. Vis. Sci. 46 2816–2822. 10.1167/iovs.04-1133 16043855
  • Awadalla M. Fingert J. Roos B. Chen S. Holmes R. Graham S. et al. (2015). Copy number variations of TBK1 in Australian patients with primary open-angle glaucoma. Am. J. Ophthalmol. 159 124–130.e1. 10.1016/j.ajo.2014.09.044 25284765
  • Azam S. Jakaria M. Kim I. Kim J. Ezazul Haque M. Choi D. (2019). Regulation of Toll-Like Receptor (TLR) signaling pathway by polyphenols in the treatment of age-linked neurodegenerative diseases: focus on TLR4 signaling. Front. Immunol. 10:1000. 10.3389/FIMMU.2019.01000 31134076
  • Bachiller S. Jiménez-Ferrer I. Paulus A. Yang Y. Swanberg M. Deierborg T. et al. (2018). Microglia in neurological diseases: a road map to brain-disease dependent-inflammatory response. Front. Cell Neurosci. 12:488. 10.3389/FNCEL.2018.00488 30618635
  • Bachstetter A. Ighodaro E. Hassoun Y. Aldeiri D. Neltner J. Patel E. et al. (2017). Rod-shaped microglia morphology is associated with aging in 2 human autopsy series. Neurobiol. Aging 52 98–105. 10.1016/j.neurobiolaging.2016.12.028 28131016
  • Bajetto A. Bonavia R. Barbero S. Schettini G. (2002). Characterization of chemokines and their receptors in the central nervous system: physiopathological implications. J. Neurochem. 82 1311–1329. 10.1046/j.1471-4159.2002.01091.x 12354279
  • Bang M. Kim D. Gonzales E. Kwon K. Shin C. (2019). Etoposide induces mitochondrial dysfunction and cellular senescence in primary cultured rat astrocytes. Biomol. Ther. 27 530–539. 10.4062/biomolther.2019.151 31646843
  • Barrientos R. Frank M. Crysdale N. Chapman T. Ahrendsen J. Day H. et al. (2011). Little exercise, big effects: reversing aging and infection-induced memory deficits, and underlying processes. J. Neurosci. 31 11578–11586. 10.1523/JNEUROSCI.2266-11.2011 21832188
  • Barrientos R. Kitt M. Watkins L. Maier S. (2015). Neuroinflammation in the normal aging hippocampus. Neuroscience 309 84–99.
  • Barron M. Griffiths P. Turnbull D. Bates D. Nichols P. (2004). The distributions of mitochondria and sodium channels reflect the specific energy requirements and conduction properties of the human optic nerve head. Br. J. Ophthalmol. 88 286–290. 10.1136/bjo.2003.027664 14736793
  • Bejarano-Escobar R. Sánchez-Calderón H. Otero-Arenas J. Martín-Partido G. Francisco-Morcillo J. (2017). Müller glia and phagocytosis of cell debris in retinal tissue. J. Anat. 231 471–483.
  • Bellaver B. Souza D. Souza D. Quincozes-Santos A. (2017). Hippocampal astrocyte cultures from adult and aged rats reproduce changes in glial functionality observed in the aging brain. Mol. Neurobiol. 54 2969–2985. 10.1007/s12035-016-9880-8 27026184
  • Bernaus A. Blanco S. Sevilla A. (2020). Glia crosstalk in neuroinflammatory diseases. Front. Cell Neurosci. 14:209. 10.3389/FNCEL.2020.00209/BIBTEX
  • Bhat R. Crowe E. Bitto A. Moh M. Katsetos C. Garcia F. et al. (2012). Astrocyte senescence as a component of Alzheimer’s disease. PLoS One 7:e45069. 10.1371/JOURNAL.PONE.0045069 22984612
  • Bitto A. Sell C. Crowe E. Lorenzini A. Malaguti M. Hrelia S. et al. (2010). Stress-induced senescence in human and rodent astrocytes. Exp. Cell Res. 316 2961–2968.
  • Blanks J. Torigoe Y. Hinton D. Blanks R. (1996). Retinal pathology in Alzheimer’s disease. I. ganglion cell loss in foveal/parafoveal retina. Neurobiol. Aging 17 377–384. 10.1016/0197-4580(96)00010-3 8725899
  • Blasko I. Stampfer-Kountchev M. Robatscher P. Veerhuis R. Eikelenboom P. Grubeck-Loebenstein B. (2004). How chronic inflammation can affect the brain and support the development of Alzheimer’s disease in old age: the role of microglia and astrocytes. Aging Cell 3 169–176. 10.1111/j.1474-9728.2004.00101.x 15268750
  • Blum J. Wearsch P. Cresswell P. (2013). Pathways of antigen processing. Annu. Rev. Immunol. 31 443–473.
  • Boccardi V. Pelini L. Ercolani S. Ruggiero C. Mecocci P. (2015). From cellular senescence to Alzheimer’s disease: the role of telomere shortening. Ageing Res. Rev. 22 1–8.
  • Boisvert M. Erikson G. Shokhirev M. Allen N. (2018). The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep. 22 269–285.
  • Bosco A. Anderson S. Breen K. Romero C. Steele M. Chiodo V. et al. (2018). Complement C3-targeted gene therapy restricts onset and progression of neurodegeneration in chronic Mouse Glaucoma. Mol. Therapy 26 2379–2396. 10.1016/j.ymthe.2018.08.017 30217731
  • Bosco A. Crish S. Steele M. Romero C. Inman D. Horner P. et al. (2012). Early reduction of microglia activation by irradiation in a model of chronic glaucoma. PLoS One 7:e43602. 10.1371/journal.pone.0043602 22952717
  • Bowman C. Rasley A. Tranguch S. Marriott I. (2003). Cultured astrocytes express toll-like receptors for bacterial products. Glia 43 281–291.
  • Bringmann A. Wiedemann P. (2012). Müller Glial cells in retinal disease. Ophthalmologica 227 1–19.
  • Bringmann A. Iandiev I. Pannicke T. Wurm A. Hollborn M. Wiedemann P. et al. (2009). Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects. Prog. Retin. Eye Res. 28 423–451. 10.1016/j.preteyeres.2009.07.001 19660572
  • Bringmann A. Pannicke T. Grosche J. Francke M. Wiedemann P. Skatchkov S. et al. (2006). Müller cells in the healthy and diseased retina. Prog. Retin. Eye Res. 25 397–424.
  • Bringmann A. Uckermann O. Pannicke T. Iandiev I. Reichenbach A. Wiedemann P. (2005). Neuronal versus glial cell swelling in the ischaemic retina. Acta Ophthalmol. Scand. 83 528–538. 10.1111/j.1600-0420.2005.00565.x 16187988
  • Bristow E. Griffiths P. Andrews R. Johnson M. Turnbull D. (2002). The distribution of mitochondrial activity in relation to optic nerve structure. Arch. Ophthalmol. 120 791–796.
  • Bsibsi M. Ravid R. Gveric D. van Noort J. (2002). Broad expression of toll-like receptors in the human central nervous system. J. Neuropathol. Exp. Neurol. 61 1013–1021.
  • Budenz D. Anderson D. Varma R. Schuman J. Cantor L. Savell J. et al. (2007). Determinants of normal retinal nerve fiber layer thickness measured by stratus OCT. Ophthalmology 114 1046–1052.
  • Burgoyne C. (2011). A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. Exp. Eye Res. 93 120–132.
  • Burgoyne C. Downs J. (2008). Premise and prediction – how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head. J. Glaucoma 17:318. 10.1097/IJG.0b013e31815a343b 18552618
  • Burgoyne C. Downs J. Bellezza A. Hart R. (2004). Three-dimensional reconstruction of normal and early glaucoma monkey optic nerve head connective tissues. Invest. Ophthalmol. Vis. Sci. 45 4388–4399.
  • Burnstock G. (1999). Release of vasoactive substances from endothelial cells by shear stress and purinergic mechanosensory transduction. J. Anat. 194 335–342. 10.1046/j.1469-7580.1999.19430335.x 10386771
  • Calkins D. (2013). Age-related changes in the visual pathways: blame it on the axon. Invest. Ophthalmol. Vis. Sci. 54 ORSF37–ORSF41. 10.1167/iovs.13-12784 24335066
  • Calkins D. Pekny M. Cooper M. Benowitz L. Calkins D. Benowitz L. et al. (2017). The challenge of regenerative therapies for the optic nerve in glaucoma. Exp. Eye Res. 157 28–33.
  • Campana S. de Pasquale C. Carrega P. Ferlazzo G. Bonaccorsi I. (2015). Cross-dressing: an alternative mechanism for antigen presentation. Immunol. Lett. 168 349–354.
  • Campello L. Esteve-Rudd J. Cuenca N. Martín-Nieto J. (2013). The ubiquitin–proteasome system in retinal health and disease. Mol. Neurobiol. 47 790–810.
  • Campuzano O. Castillo-Ruiz M. Acarin L. Castellano B. Gonzalez B. (2009). Increased levels of proinflammatory cytokines in the aged rat brain attenuate injury-induced cytokine response after excitotoxic damage. J. Neurosci. Res. 87 2484–2497. 10.1002/jnr.22074 19326443
  • Cannell I. Kong Y. Bushell M. (2008). How do microRNAs regulate gene expression? Biochem. Soc. Trans. 36 1224–1231.
  • Cao T. Thomas T. Ziebell J. Pauly J. Lifshitz J. (2012). Morphological and genetic activation of microglia after diffuse traumatic brain injury in the rat. Neuroscience 225 65–75. 10.1016/j.neuroscience.2012.08.058 22960311
  • Carrero I. Gonzalo M. Martin B. Sanz-Anquela J. Arévalo-Serrano J. Gonzalo-Ruiz A. (2012). Oligomers of beta-amyloid protein (Aβ1-42) induce the activation of cyclooxygenase-2 in astrocytes via an interaction with interleukin-1beta, tumour necrosis factor-alpha, and a nuclear factor kappa-B mechanism in the rat brain. Exp. Neurol. 236 215–227.
  • Cassano T. Pace L. Bedse G. Michele Lavecchia A. de Marco F. Gaetani S. et al. (2016). Glutamate and mitochondria: two prominent players in the oxidative stress-induced neurodegeneration. Curr. Alzheimer. Res. 13 185–197. 10.2174/1567205013666151218132725 26679860
  • Cekanaviciute E. Fathali N. Doyle K. Williams A. Han J. Buckwalter M. (2014). Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice. Glia 62 1227–1240. 10.1002/glia.22675 24733756
  • Chang E. Goldberg J. (2012). Glaucoma 2.0: neuroprotection, neuroregeneration, neuroenhancement. Ophthalmology 119 979–986. 10.1016/j.ophtha.2011.11.003 22349567
  • Chan-Ling T. Hughes S. Baxter L. Rosinova E. McGregor I. Morcos Y. et al. (2007). Inflammation and breakdown of the blood-retinal barrier during “physiological aging” in the rat retina: a model for CNS aging. Microcirculation 14 63–76. 10.1080/10739680601073451 17365662
  • Chen H. Cho K. Vu T. Shen C. Kaur M. Chen G. et al. (2018). Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma. Nat. Commun. 9:3209.
  • Chen M. Luo C. Zhao J. Devarajan G. Xu H. (2019). Immune regulation in the aging retina. Prog. Retin. Eye Res. 69 159–172.
  • Chen M. Muckersie E. Forrester J. V. Xu H. (2010). Immune activation in retinal aging: a gene expression study. Invest. Ophthalmol. Vis. Sci. 51, 5888–5896. 10.1167/iovs.09-5103 20538981
  • Chen Y. Lin Y. Vithana E. Jia L. Zuo X. Wong T. et al. (2014). Common variants near ABCA1 and in PMM2 are associated with primary open-angle glaucoma. Nat. Genet. 46 1115–1119. 10.1038/ng.3078 25173107
  • Chen Y. Vartiainen N. Ying W. Chan P. Koistinaho J. Swanson R. (2001). Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J. Neurochem. 77 1601–1610. 10.1046/j.1471-4159.2001.00374.x 11413243
  • Cherry J. Olschowka J. O’Banion M. (2014). Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J. Neuroinflammation 11:98.
  • Chidlow G. Ebneter A. Wood J. Casson R. (2011). The optic nerve head is the site of axonal transport disruption, axonal cytoskeleton damage and putative axonal regeneration failure in a rat model of glaucoma. Acta Neuropathol. 121 737–751. 10.1007/s00401-011-0807-1 21311901
  • Chidlow G. Ebneter A. Wood J. Casson R. (2016). Evidence supporting an association between expression of major histocompatibility complex II by microglia and optic nerve degeneration during experimental glaucoma. J. Glaucoma 25 681–691. 10.1097/IJG.0000000000000447 27253969
  • Chien Y. Scuoppo C. Wang X. Fang X. Balgley B. Bolden J. et al. (2011). Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes Dev. 25 2125–2136.
  • Cho S. Chen J. Sayed F. Ward M. Gao F. Nguyen T. et al. (2015). SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1β. J. Neurosci. 35 807–818.
  • Chong R. Martin K. (2015). Glial cell interactions and glaucoma. Curr. Opin. Ophthalmol. 26 73–77.
  • Chrysostomou V. Rezania F. Trounce I. Crowston J. (2013). Oxidative stress and mitochondrial dysfunction in glaucoma. Curr. Opin. Pharmacol. 13 12–15.
  • Chua J. Vania M. Cheung C. Ang M. Chee S. Yang H. et al. (2012). Expression profile of inflammatory cytokines in aqueous from glaucomatous eyes. Mol. Vis. 18 431–438. 22355254
  • Clarke L. Liddelow S. Chakraborty C. Münch A. Heiman M. Barres B. (2018). Normal aging induces A1-like astrocyte reactivity. Proc. Natl. Acad. Sci. U S A. 115 E1896–E1905.
  • Colombo E. Farina C. (2016). Astrocytes: key regulators of neuroinflammation. Trends Immunol. 37 608–620.
  • Coughlin B. Feenstra D. Mohr S. (2017). Müller cells and diabetic retinopathy. Vision Res. 139 93–100.
  • Crish S. Calkins D. (2011). Neurodegeneration in glaucoma: progression and calcium-dependent intracellular mechanisms. Neuroscience 176 1–11. 10.1016/j.neuroscience.2010.12.036 21187126
  • Crish S. Sappington R. Inman D. Horner P. Calkins D. (2010). Distal axonopathy with structural persistence in glaucomatous neurodegeneration. Proc. Natl. Acad. Sci. 107 5196–5201. 10.1073/pnas.0913141107 20194762
  • Curcio C. Drucker D. (1993). Retinal ganghon cells in Alzheimer’s disease and Agng. Ann. Neurol. 33 248–257.
  • Dai C. Khaw P. Yin Z. Li D. Raisman G. Li Y. (2012). Structural basis of glaucoma: the fortified astrocytes of the optic nerve head are the target of raised intraocular pressure. Glia 60 13–28. 10.1002/glia.21242 21948238
  • Damani M. Zhao L. Fontainhas A. Amaral J. Fariss R. Wong W. (2011). Age-related alterations in the dynamic behavior of microglia. Aging Cell 10 263–276.
  • Davies D. Ma J. Jegathees T. Goldsbury C. (2017). Microglia show altered morphology and reduced arborization in human brain during aging and Alzheimer’s disease. Brain Pathol. 27 795–808. 10.1111/bpa.12456 27862631
  • Davies S. Elliott M. Floor E. Truscott T. Zareba M. Sarna T. et al. (2001). Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells. Free Radic. Biol. Med. 31 256–265. 10.1016/s0891-5849(01)00582-2 11440838
  • Davis B. Salinas-Navarro M. Cordeiro M. Moons L. Groef L. (2017). Characterizing microglia activation: a spatial statistics approach to maximize information extraction. Sci. Rep. 7:1576. 10.1038/s41598-017-01747-8 28484229
  • de Hoz R. Gallego B. Ramírez A. Rojas B. Salazar J. Valiente-Soriano F. et al. (2013). Rod-like microglia are restricted to eyes with laser-induced ocular hypertension but absent from the microglial changes in the contralateral untreated eye. PLoS One 8:e83733. 10.1371/JOURNAL.PONE.0083733 24367610
  • de Moraes C. Cioffi G. Weinreb R. Liebmann J. (2018). New recommendations for the treatment of systemic hypertension and their potential implications for Glaucoma management. J. Glaucoma 27 567–571. 10.1097/IJG.0000000000000981 29750712
  • Dias M. Luo X. Ribas V. Petrs-Silva H. Koch J. (2022). The role of axonal transport in Glaucoma. Int. J. Mol. Sci. 23:3935.
  • Ding Z. Song L. Wang Q. Kumar G. Yan Y. Ma C. (2021). Astrocytes: a double-edged sword in neurodegenerative diseases. Neural Regen. Res. 16 1702–1710.
  • Doucette L. Rasnitsyn A. Seifi M. Walter M. (2015). The interactions of genes, age, and environment in glaucoma pathogenesis. Surv. Ophthalmol. 60 310–326.
  • Drange S. Anderson D. Schulzer M. (2001). Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am. J. Ophthalmol. 131 699–708.
  • Duarte J. (2021). Neuroinflammatory mechanisms of mitochondrial dysfunction and neurodegeneration in Glaucoma. J. Ophthalmol. 2021:4581909.
  • Dubbelaar M. Kracht L. Eggen B. Boddeke E. (2018). The kaleidoscope of microglial phenotypes. Front. Immunol. 9:1753. 10.3389/FIMMU.2018.01753 30108586
  • Ebneter A. Casson R. Wood J. Chidlow G. (2010). Microglial activation in the visual pathway in experimental glaucoma: spatiotemporal characterization and correlation with axonal injury. Invest. Ophthalmol. Vis. Sci. 51 6448–6460. 10.1167/iovs.10-5284 20688732
  • Edwards J. Zhang X. Frauwirth K. Mosser D. (2006). Biochemical and functional characterization of three activated macrophage populations. J. Leukoc Biol. 80 1298–1307.
  • Enokido Y. Yoshitake A. Ito H. Okazawa H. (2008). Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain. Biochem. Biophys. Res. Commun. 376 128–133. 10.1016/j.bbrc.2008.08.108 18762169
  • Escartin C. Bonvento G. (2008). Targeted activation of astrocytes: a potential neuroprotective strategy. Mol. Neurobiol. 38 231–241.
  • Fan Gaskin J. Shah M. Chan E. (2021). Oxidative stress and the role of NADPH oxidase in Glaucoma. Antioxidants 10:238.
  • Fan W. Huang W. Chen J. Li N. Mao L. Hou S. (2022). Retinal microglia: functions and diseases. Immunology. 166 268–286.
  • Fernández-Albarral J. de Hoz R. Matamoros J. Chen L. López-Cuenca I. Salobrar-García E. et al. (2022). Retinal changes in astrocytes and Müller Glia in a mouse model of laser-induced glaucoma: a time-course study. Biomedicines 10: 939. 10.3390/biomedicines10050939 35625676
  • Fernandez-Albarral J. Ramírez A. de Hoz R. Salazar J. (2022). Retinal microglial activation in glaucoma: evolution over time in a unilateral ocular hypertension model. Neural Regen. Res. 17:797. 10.4103/1673-5374.322454 34472476
  • Fernández-Albarral J. Ramírez A. de Hoz R. López-Villarín N. Salobrar-García E. López-Cuenca I. et al. (2019a). Neuroprotective and anti-inflammatory effects of a hydrophilic saffron extract in a model of glaucoma. Int. J. Mol. Sci. 20:E4110. 10.3390/ijms20174110 31443568
  • Fernández-Albarral J. Salazar J. de Hoz R. Marco E. Martín-Sánchez B. Flores-Salguero E. et al. (2021). Retinal molecular changes are associated with neuroinflammation and loss of RGCs in an experimental model of Glaucoma. Int. J. Mol. Sci. 22:2066. 10.3390/ijms22042066 33669765
  • Fernández-Albarral J. Salobrar-García E. Martínez-Páramo R. Ramírez A. de Hoz R. Ramírez J. et al. (2019b). Retinal glial changes in Alzheimer’s disease – a review. J. Optom. 12 198–207.
  • Ferreira S. Fabián Lerner S. Brunzini R. Reides C. Evelson P. Llesuy S. (2010). Time course changes of oxidative stress markers in a rat experimental glaucoma model. Invest. Ophthalmol. Vis. Sci. 51 4635–4640. 10.1167/iovs.09-5044 20357192
  • Fingert J. (2011). Primary open-angle glaucoma genes. Eye 25 587–595.
  • Fingert J. Héon E. Liebmann J. Yamamoto T. Craig J. Rait J. et al. (1999). Analysis of Myocilin mutations in 1703 Glaucoma patients from five different populations. Hum. Mol. Genet. 8 899–905. 10.1093/hmg/8.5.899 10196380
  • Fingert J. Miller K. Hedberg-Buenz A. Roos B. Lewis C. Mullins R. et al. (2017). Transgenic TBK1 mice have features of normal tension glaucoma. Hum. Mol. Genet. 26 124–132. 10.1093/hmg/ddw372 28025332
  • Fingert J. Stone E. Sheffield V. Alward W. (2002). Myocilin Glaucoma. Surv. Ophthalmol. 47 547–561.
  • Finkel T. Holbrook N. (2000). Oxidants, oxidative stress and the biology of ageing. Nature 408 239–247.
  • Fishelson Z. Attali G. Mevorach D. (2001). Complement and apoptosis. Mol. Immunol. 38 207–219.
  • Flammer J. Orgül S. Costa V. Orzalesi N. Krieglstein G. Serra L. et al. (2002). The impact of ocular blood flow in glaucoma. Prog. Retin. Eye Res. 21 359–393.
  • Foxton R. Finkelstein A. Vijay S. Dahlmann-Noor A. Khaw P. Morgan J. et al. (2013). VEGF-a is necessary and sufficient for retinal neuroprotection in models of experimental Glaucoma. Am. J. Pathol. 182 1379–1390. 10.1016/j.ajpath.2012.12.032 23416159
  • Franceschi C. Bonafè M. Valensin S. Olivieri F. de Luca M. Ottaviani E. et al. (2000). Inflamm-aging. an evolutionary perspective on immunosenescence. Ann. N Y Acad. Sci. 908 244–254.
  • Franceschi C. Garagnani P. Parini P. Giuliani C. Santoro A. (2018). Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14 576–590. 10.1038/s41574-018-0059-4 30046148
  • Franco R. Fernández-Suárez D. (2015). Alternatively activated microglia and macrophages in the central nervous system. Prog. Neurobiol. 131 65–86.
  • Frank M. Barrientos R. Biedenkapp J. Rudy J. Watkins L. Maier S. (2006). mRNA up-regulation of MHC II and pivotal pro-inflammatory genes in normal brain aging. Neurobiol. Aging 27 717–722. 10.1016/j.neurobiolaging.2005.03.013 15890435
  • Frasca D. Blomberg B. (2015). Inflammaging decreases adaptive and innate immune responses in mice and humans. Biogerontology 17 7–19.
  • Fulop T. Witkowski J. Olivieri F. Larbi A. (2018). The integration of inflammaging in age-related diseases. Semin. Immunol. 40 17–35.
  • Gabandé-Rodríguez E. Keane L. Capasso M. (2020). Microglial phagocytosis in aging and Alzheimer’s disease. J. Neurosci. Res. 98 284–298.
  • Galan A. Dergham P. Escoll P. De-la-Hera A. D’Onofrio P. Magharious M. et al. (2014). Neuronal injury external to the retina rapidly activates retinal glia, followed by elevation of markers for cell cycle re-entry and death in retinal ganglion cells. PLoS One 9:e101349. 10.1371/JOURNAL.PONE.0101349 24983470
  • Gamage R. Wagnon I. Rossetti I. Childs R. Niedermayer G. Chesworth R. et al. (2020). Cholinergic modulation of glial function during aging and chronic neuroinflammation. Front. Cell Neurosci. 14:577912. 10.3389/FNCEL.2020.577912 33192323
  • Gao F. Ji M. Wu J. Wang Z. (2013). Roles of retinal Müller cells in health and glaucoma. Sheng Li Xue Bao 65 654–663.
  • Garcia T. Pannicke T. Vogler S. Berk B. Grosche A. Wiedemann P. et al. (2014). Nerve growth factor inhibits osmotic swelling of rat retinal glial (Müller) and bipolar cells by inducing glial cytokine release. J. Neurochem. 131 303–313. 10.1111/jnc.12822 25041175
  • García-Bermúdez M. Freude K. Mouhammad Z. van Wijngaarden P. Martin K. Kolko M. (2021). Glial cells in glaucoma: friends, foes, and potential therapeutic targets. Front. Neurol. 12:169. 10.3389/FNEUR.2021.624983/BIBTEX
  • Garner K. M. Amin R. Johnson R. W. Scarlett E. J. Burton M. D. (2018). Microglia priming by interleukin-6 signaling is enhanced in aged mice. J. Neuroimmunol. 324 90–99. 10.1016/j.jneuroim.2018.09.002 30261355
  • Geng L. Fan L. Liu F. Smith C. Li J. (2020). Nox2 dependent redox-regulation of microglial response to amyloid-β stimulation and microgliosis in aging. Sci. Rep. 10:5294.
  • Gerber A. Harris A. Siesky B. Lee E. Schaab T. Huck A. et al. (2015). Vascular dysfunction in diabetes and glaucoma: a complex relationship reviewed. J. Glaucoma 24 474–479. 10.1097/IJG.0000000000000137 25264988
  • Gharahkhani P. Burdon K. Fogarty R. Sharma S. Hewitt A. Martin S. et al. (2014). Common variants near ABCA1, AFAP1 and GMDS confer risk of primary open-angle glaucoma. Nat. Genet. 46 1120–1125. 10.1038/ng.3079 25173105
  • Giangiacomo A. Coleman A. (2009). “The epidemiology of Glaucoma,” in Glaucoma, eds Grehn F. Stamper R. (Berlin: Springer).
  • Gibson K. Wu Y. Barnett Y. Duggan O. Vaughan R. Kondeatis E. et al. (2009). B-cell diversity decreases in old age and is correlated with poor health status. Aging Cell 8 18–25. 10.1111/j.1474-9726.2008.00443.x 18986373
  • Gimenez M. Sim J. Russell J. (2004). TNFR1-dependent VCAM-1 expression by astrocytes exposes the CNS to destructive inflammation. J. Neuroimmunol. 151 116–125. 10.1016/j.jneuroim.2004.02.012 15145610
  • Giordano K. Denman C. Dubisch P. Akhter M. Lifshitz J. (2021). An update on the rod microglia variant in experimental and clinical brain injury and disease. Brain Commun. 3:fcaa227. 10.1093/braincomms/fcaa227 33501429
  • Glass C. Saijo K. Winner B. Marchetto M. Gage F. (2010). Mechanisms underlying inflammation in neurodegeneration. Cell 140 918–934.
  • Gonzalez P. Li G. Qiu J. Wu J. Luna C. (2014). Role of microRNAs in the trabecular meshwork. J. Ocul. Pharmacol. Ther. 30 128–137.
  • Gordon M. Torri V. Miglior S. Beiser J. Floriani I. Miller J. et al. (2007). Validated prediction model for the development of primary open-angle glaucoma in individuals with ocular hypertension. Ophthalmology 114 10–19.e2.
  • Gorgoulis V. Adams P. Alimonti A. Bennett D. Bischof O. Bishop C. et al. (2019). Cellular senescence: defining a path forward. Cell 179 813–827. 10.1016/j.cell.2019.10.005 31675495
  • Gramlich O. W. Beck S. von Thun und Hohenstein-Blaul N. Boehm N. Ziegler A. Vetter J. M. et al. (2013). Enhanced insight into the autoimmune component of Glaucoma: IgG autoantibody accumulation and pro-inflammatory conditions in human glaucomatous retina. PLoS One 8:e57557. 10.1371/journal.pone.0057557 23451242
  • Gramlich O. Ding Q. Zhu W. Cook A. Anderson M. Kuehn M. (2015). Adoptive transfer of immune cells from glaucomatous mice provokes retinal ganglion cell loss in recipients. Acta Neuropathol. Commun. 3:56. 10.1186/s40478-015-0234-y 26374513
  • Greene K. Stamer W. Liu Y. (2022). The role of microRNAs in glaucoma. Exp. Eye Res. 215:108909.
  • Gregory M. Hackett C. Abernathy E. Lee K. Saff R. Hohlbaum A. et al. (2011). Opposing roles for membrane bound and soluble Fas ligand in glaucoma-associated retinal ganglion cell death. PLoS One 6:e17659. 10.1371/journal.pone.0017659 21479271
  • Grimm A. Eckert A. (2017). Brain aging and neurodegeneration: from a mitochondrial point of view. J. Neurochem. 143 418–431.
  • Grubeck-Loebenstein B. della Bella S. Iorio A. Michel J. Pawelec G. Solana R. (2009). Immunosenescence and vaccine failure in the elderly. Aging Clin. Exp. Res. 21 201–209.
  • Guest J. Grant R. Mori T. Croft K. (2014). Changes in oxidative damage, inflammation and [NAD(H)] with age in cerebrospinal fluid. PLoS One 9:e85335. 10.1371/JOURNAL.PONE.0085335 24454842
  • Guillonneau X. Eandi C. Paques M. Sahel J. Sapieha P. Sennlaub F. (2017). On phagocytes and macular degeneration. Prog. Retin. Eye Res. 61 98–128.
  • Gutteridge I. (2021). Normal tension glaucoma: diagnostic features and comparisons with primary open angle glaucoma. Clin. Exp. Optom. 83 161–172.
  • Han X. Zhang T. Liu H. Mi Y. Gou X. (2020). Astrocyte senescence and Alzheimer’s disease: a review. Front. Aging Neurosci. 12:148. 10.3389/FNAGI.2020.00148/BIBTEX
  • Harada T. Harada C. Kohsaka S. Wada E. Yoshida K. Ohno S. et al. (2002). Microglia-Mü ller Glia cell interactions control neurotrophic factor production during light-induced retinal degeneration. J. Neurosci. 22 9228–9236. 10.1523/JNEUROSCI.22-21-09228.2002 12417648
  • Harris A. Ciulla T. Chung H. Martin B. (1998). Regulation of retinal and optic nerve blood flow. Arch. Ophthalmol. 116 1491–1495.
  • Harris J. Attwell D. (2012). The energetics of CNS white matter. J. Neurosci. 32 356–371.
  • Harry G. (2013). Microglia during development and aging. Pharmacol. Ther. 139 313–326.
  • Harvey H. Durant S. (2014). The role of glial cells and the complement system in retinal diseases and Alzheimer’s disease: common neural degeneration mechanisms. Exp. Brain Res. 232 3363–3377. 10.1007/s00221-014-4078-7 25183160
  • Harwerth R. Wheat J. Rangaswamy N. V. (2008). Age-related losses of retinal ganglion cells and axons. Invest. Ophthalmol. Vis. Sci. 49 4437–4443.
  • Healey P. Mitchell P. Smith W. Wang J. J. (1998). Optic disc hemorrhages in a population with and without signs of glaucoma. Ophthalmology 105 216–223. 10.1016/s0161-6420(98)92704-x 9479278
  • Heijl A. Leske M. Bengtsson B. Hyman L. Bengtsson B. Hussein M. (2002). Reduction of intraocular pressure and Glaucoma progression: results from the early manifest Glaucoma trial. Arch. Ophthalmol. 120 1268–1279.
  • Heneka M. Carson M. Khoury J. Landreth G. Brosseron F. Feinstein D. et al. (2015). Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 14 388–405.
  • Henry C. Huang Y. Wynne A. Godbout J. (2009). Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1beta and anti-inflammatory IL-10 cytokines. Brain Behav. Immun. 23 309–317. 10.1016/j.bbi.2008.09.002 18814846
  • Hernandez M. Miao H. Lukas T. (2008). Astrocytes in glaucomatous optic neuropathy. Prog. Brain Res. 173 353–373.
  • Hernandez-Segura A. Nehme J. Demaria M. (2018). Hallmarks of cellular senescence. Trends Cell Biol. 28 436–453.
  • Hickman S. Izzy S. Sen P. Morsett L. Khoury J. (2018). Microglia in neurodegeneration. Nat. Neurosci. 21 1359–1369.
  • Hickman S. Kingery N. Ohsumi T. Borowsky M. Wang L. Means T. et al. (2013). The microglial sensome revealed by direct RNA sequencing. Nat. Neurosci. 16 1896–1905. 10.1038/nn.3554 24162652
  • Hindle A. Thoonen R. Jasien J. V. Grange R. Amin K. Wise J. et al. (2019). Identification of candidate miRNA biomarkers for Glaucoma. Invest. Ophthalmol. Vis. Sci. 60 134–146. 10.1167/iovs.18-24878 30629727
  • Hirt J. Porter K. Dixon A. McKinnon S. Liton P. (2018). Contribution of autophagy to ocular hypertension and neurodegeneration in the DBA/2J spontaneous glaucoma mouse model. Cell Death Discov. 4:75. 10.1038/s41420-018-0077-y 30210817
  • Hoare M. Narita M. (2013). Transmitting senescence to the cell neighbourhood. Nature Cell Biol. 15 887–889. 10.1038/ncb2811 23907191
  • Hollborn M. Francke M. Iandiev I. Bühner E. Foja C. Kohen L. et al. (2008). Early activation of inflammation- and immune response-related genes after experimental detachment of the porcine retina. Invest. Ophthalmol. Vis. Sci. 49 1262–1273. 10.1167/iovs.07-0879 18326757
  • Holloway O. Canty A. King A. Ziebell J. (2019). Rod microglia and their role in neurological diseases. Semin. Cell Dev. Biol. 94 96–103.
  • Howell G. Libby R. Jakobs T. Smith R. Phalan F. Barter J. et al. (2007). Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J. Cell Biol. 179 1523–1537. 10.1083/jcb.200706181 18158332
  • Howell G. Macalinao D. Sousa G. Walden M. Soto I. Kneeland S. et al. (2011). Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J. Clin. Invest. 121 1429–1444. 10.1172/JCI44646 21383504
  • Howell G. Soto I. Ryan M. Graham L. Smith R. John S. (2013). Deficiency of complement component 5 ameliorates glaucoma in DBA/2J mice. J. Neuroinflammation 10:76. 10.1186/1742-2094-10-76 23806181
  • Howell G. Soto I. Zhu X. Ryan M. Macalinao D. Sousa G. et al. (2012). Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma. J. Clin. Invest. 122 1246–1261. 10.1172/JCI61135 22426214
  • Hu C. Niu L. Li L. Song M. Zhang Y. Lei Y. et al. (2020). ABCA1 regulates IOP by modulating Cav1/eNOS/NO signaling pathway. Invest. Ophthalmol. Vis. Sci. 61:33. 10.1167/iovs.61.5.33 32428234
  • Huang W. Jaroszewski J. Ortego J. Escribano J. Coca-Prados M. (2000). Expression of the TIGR gene in the iris, ciliary body, and trabecular meshwork of the human eye. Ophthalmic Genet. 21 155–169.
  • Hurley D. Normile C. Irnaten M. O’Brien C. (2022). The intertwined roles of oxidative stress and endoplasmic reticulum stress in Glaucoma. Antioxidants 11:886. 10.3390/antiox11050886 35624748
  • Iandiev I. Wurm A. Hollborn M. Wiedemann P. Grimm C. Remé C. et al. (2008). Müller cell response to blue light injury of the rat retina. Invest. Ophthalmol. Vis. Sci. 49 3559–3567.
  • Ikeda O. Murakami M. Ino H. Yamazaki M. Nemoto T. Koda M. et al. (2001). Acute up-regulation of brain-derived neurotrophic factor expression resulting from experimentally induced injury in the rat spinal cord. Acta Neuropathol. 102 239–245. 10.1007/s004010000357 11585248
  • Inman D. Horner P. (2007). Reactive nonproliferative gliosis predominates in a chronic mouse model of glaucoma. Glia 55 942–953. 10.1002/glia.20516 17457855
  • Inman D. Lambert W. Calkins D. Horner P. (2013). α-Lipoic acid antioxidant treatment limits glaucoma-related retinal ganglion cell death and dysfunction. PLoS One 8:e65389. 10.1371/JOURNAL.PONE.0065389 23755225
  • Iomdina E. N. Khoroshilova-Maslova I. P. Robustova O. V. Averina O. A. Kovaleva N. A. Aliev G. et al. (2015). Mitochondria-targeted antioxidant SkQ1 reverses glaucomatous lesions in rabbits. Front. Biosci. 20 892–901. 10.2741/4343 25553485
  • Iram T. Trudler D. Kain D. Kanner S. Galron R. Vassar R. et al. (2016). Astrocytes from old Alzheimer’s disease mice are impaired in Aβ uptake and in neuroprotection. Neurobiol. Dis. 96 84–94.
  • Ito Y. di Polo A. (2017). Mitochondrial dynamics, transport, and quality control: a bottleneck for retinal ganglion cell viability in optic neuropathies. Mitochondrion 36 186–192. 10.1016/j.mito.2017.08.014 28866056
  • Jarrett S. Lin H. Godley B. Boulton M. (2008). Mitochondrial DNA damage and its potential role in retinal degeneration. Prog. Retin Eye Res. 27 596–607.
  • Jayaram H. Cepurna W. Johnson E. Morrison J. (2015). MicroRNA expression in the Glaucomatous retina. Invest. Ophthalmol. Vis. Sci. 56 7971–7982.
  • Jayaram H. Phillips J. Lozano D. Choe T. Cepurna W. Johnson E. et al. (2017). Comparison of MicroRNA expression in aqueous humor of normal and primary open-angle glaucoma patients using PCR arrays: a pilot study. Invest. Ophthalmol. Vis. Sci. 58 2884–2890.
  • Jensen C. Massie A. de Keyser J. (2013). Immune players in the CNS: the astrocyte. J. Neuroimmune Pharmacol. 8 824–839.
  • Jha P. Banda H. Tytarenko R. Bora P. Bora N. (2011). Complement mediated apoptosis leads to the loss of retinal ganglion cells in animal model of glaucoma. Mol. Immunol. 48 2151–2158. 10.1016/j.molimm.2011.07.012 21821293
  • Johnson E. Doser T. Cepurna W. Dyck J. Jia L. Guo Y. et al. (2011). Cell proliferation and interleukin-6-type cytokine signaling are implicated by gene expression responses in early optic nerve head injury in rat glaucoma. Invest. Ophthalmol. Vis. Sci. 52 504–518. 10.1167/iovs.10-5317 20847120
  • Johnson E. Jia L. Cepurna W. Doser T. Morrison J. (2007). Global changes in optic nerve head gene expression after exposure to elevated intraocular pressure in a rat Glaucoma model. Invest. Ophthalmol. Vis. Sci. 48 3161–3177. 10.1167/iovs.06-1282 17591886
  • Jonas J. Wang N. Wang Y. You Q. Yang D. Xu L. (2014). Ocular hypertension: general characteristics and estimated cerebrospinal fluid pressure. the Beijing eye study 2011. PLoS One 9:e100533. 10.1371/JOURNAL.PONE.0100533 24988292
  • Kamel K. Farrell M. O’Brien C. (2017). Mitochondrial dysfunction in ocular disease: focus on glaucoma. Mitochondrion 35 44–53.
  • Kang Y. Jia P. Zhao H. Hu C. Yang X. (2015). MicroRNA-26a overexpression protects RGC-5 cells against H2O2-induced apoptosis. Biochem. Biophys. Res. Commun. 460 164–169. 10.1016/j.bbrc.2015.02.164 25757910
  • Karlstetter M. Ebert S. Langmann T. (2010). Microglia in the healthy and degenerating retina: insights from novel mouse models. Immunobiology 215 685–691. 10.1016/j.imbio.2010.05.010 20573418
  • Karlstetter M. Scholz R. Rutar M. Wong W. Provis J. Langmann T. (2015). Retinal microglia: just bystander or target for therapy? Prog. Retin. Eye Res. 45 30–57.
  • Karperien A. Ahammer H. Jelinek H. (2013). Quantitating the subtleties of microglial morphology with fractal analysis. Front. Cell Neurosci. 7:3. 10.3389/FNCEL.2013.00003 23386810
  • Kawasaki A. Otori Y. Barnstable C. (2000). Muller cell protection of rat retinal ganglion cells from glutamate and nitric oxide neurotoxicity. Invest. Ophthalmol. Vis. Sci. 41 3444–3450. 11006237
  • Kelly R. Joers V. Tansey M. McKernan D. Dowd E. (2020). Microglial phenotypes and their relationship to the cannabinoid system: therapeutic implications for Parkinson’s disease. Molecules 25:453. 10.3390/molecules25030453 31973235
  • Kempuraj D. Thangavel R. Natteru P. Selvakumar G. Saeed D. Zahoor H. et al. (2016). Neuroinflammation Induces Neurodegeneration. J. Neurol. Neurosurg. Spine 1:1003.
  • Ko M. Peng P. Ma M. Ritch R. Chen C. (2005). Dynamic changes in reactive oxygen species and antioxidant levels in retinas in experimental glaucoma. Free Radic. Biol. Med. 39 365–373. 10.1016/j.freeradbiomed.2005.03.025 15993335
  • Koellhoffer E. McCullough L. Ritzel R. (2017). Old maids: aging and its impact on microglia function. Int. J. Mol. Sci. 18:769. 10.3390/ijms18040769 28379162
  • Kong N. Lu X. Li B. (2014). Downregulation of microRNA-100 protects apoptosis and promotes neuronal growth in retinal ganglion cells. BMC Mol. Biol. 15:25. 10.1186/S12867-014-0025-1 25406880
  • Konishi H. Koizumi S. Kiyama H. (2022). Phagocytic astrocytes: emerging from the shadows of microglia. Glia 70 1009–1026. 10.1002/glia.24145 35142399
  • Konishi H. Okamoto T. Hara Y. Komine O. Tamada H. Maeda M. et al. (2020). Astrocytic phagocytosis is a compensatory mechanism for microglial dysfunction. EMBO J. 39:e104464.
  • Kostianovsky A. Maier L. Anderson R. Bruce J. Anderson D. (2008). Astrocytic regulation of human monocytic/microglial activation. J. Immunol. 181 5425–5432. 10.4049/jimmunol.181.8.5425 18832699
  • Kotecha A. Izadi S. Jeffery G. (2006). Age-related changes in the thickness of the human lamina cribrosa. Br. J. Ophthalmol. 90 1531–1534.
  • Križaj D. Ryskamp D. Tian N. Tezel G. Mitchell C. Slepak V. et al. (2014). From mechanosensitivity to inflammatory responses: new players in the pathology of Glaucoma. Curr. Eye Res. 39 105–119. 10.3109/02713683.2013.836541 24144321
  • Kruchkova Y. Ben-Dror I. Herschkovitz A. David M. Yayon A. Vardimon L. (2001). Basic fibroblast growth factor: a potential inhibitor of glutamine synthetase expression in injured neural tissue. J. Neurochem. 77 1641–1649. 10.1046/j.1471-4159.2001.00390.x 11413247
  • Kuehn M. Kim C. Ostojic J. Bellin M. Alward W. Stone E. et al. (2006). Retinal synthesis and deposition of complement components induced by ocular hypertension. Exp. Eye Res. 83 620–628. 10.1016/j.exer.2006.03.002 16677633
  • Kumar A. Shamsuddin N. (2012). Retinal Muller Glia initiate innate response to infectious stimuli via toll-like receptor signaling. PLoS One 7:e29830. 10.1371/JOURNAL.PONE.0029830 22253793
  • Kuzumaki N. Ikegami D. Imai S. Narita M. Tamura R. Yajima M. et al. (2010). Enhanced IL-1beta production in response to the activation of hippocampal glial cells impairs neurogenesis in aged mice. Synapse 64 721–728. 10.1002/syn.20800 20336624
  • Kwon H. Koh S. (2020). Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl. Neurodegener. 9:42.
  • Lahne M. Nagashima M. Hyde D. Hitchcock P. (2020). Reprogramming Müller Glia to regenerate retinal neurons. Annu. Rev. Vis. Sci. 6 171–193. 10.1146/annurev-vision-121219-081808 32343929
  • Lam K. Wu Q. Hu W. Yao P. Wang H. Dong T. et al. (2019). Asarones from Acori Tatarinowii Rhizoma stimulate expression and secretion of neurotrophic factors in cultured astrocytes. Neurosci. Lett. 707:134308. 10.1016/j.neulet.2019.134308 31153972
  • Lan X. Han X. Li Q. Yang Q. Wang J. (2017). Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat. Rev. Neurol. 13 420–433.
  • Larsson Å Wilhelmsson U. Pekna M. Pekny M. (2004). Increased cell proliferation and neurogenesis in the hippocampal dentate Gyrus of old GFAP-/- Vim-/- Mice. Neurochem. Res. 29 2069–2073. 10.1007/s11064-004-6880-2 15662841
  • Lebrun-Julien F. Duplan L. Pernet V. Osswald I. Sapieha P. Bourgeois P. et al. (2009). Excitotoxic death of retinal neurons in vivo occurs via a non-cell-autonomous mechanism. J. Neurosci. 29 5536–5545. 10.1523/JNEUROSCI.0831-09.2009 19403821
  • Lee C. Klopp R. Weindruch R. Prolla T. (1999). Gene expression profile of aging and its retardation by caloric restriction. Science 285 1390–1393.
  • Lee C. Weindruch R. Prolla T. (2000). Gene-expression profile of the ageing brain in mice. Nat. Genet. 25 294–297.
  • Lee J. Caprioli J. Nouri-Mahdavi K. Afifi A. Morales E. Ramanathan M. et al. (2014). Baseline prognostic factors predict rapid visual field deterioration in Glaucoma. Invest. Ophthalmol. Vis. Sci. 55 2228–2236. 10.1167/iovs.13-12261 24458154
  • Lee K. Lin S. Copland D. Dick A. Liu J. (2021). Cellular senescence in the aging retina and developments of senotherapies for age-related macular degeneration. J. Neuroinflammation 18 5293258. 10.1186/s12974-021-02088-0 33482879
  • Lee M. Kim C. Shin S. Moon S. Chun M. (1998). Increased ciliary neurotrophic factor expression in reactive astrocytes following spinal cord injury in the rat. Neurosci. Lett. 255 79–82. 10.1016/s0304-3940(98)00710-1 9835219
  • Leng S. Xue Q. Huang Y. Semba R. Chaves P. Bandeen-Roche K. et al. (2005). Total and differential white blood cell counts and their associations with circulating interleukin-6 levels in community-dwelling older women. J. Gerontol. A Biol. Sci. Med. Sci. 60 195–199. 10.1093/gerona/60.2.195 15814862
  • Leske M. Heijl A. Hyman L. Bengtsson B. Komaroff E. (2004). Factors for progression and glaucoma treatment: the early manifest Glaucoma trial. Curr. Opin. Ophthalmol. 15 102–106.
  • Letiembre M. Hao W. Liu Y. Walter S. Mihaljevic I. Rivest S. et al. (2007). Innate immune receptor expression in normal brain aging. Neuroscience 146 248–254.
  • Levine R. Yang A. Brahma V. Martone J. (2017). Management of blood pressure in patients with Glaucoma. Curr. Cardiol. Rep. 19:109.
  • Lewis G. Mervin K. Valter K. Maslim J. Kappel P. Stone J. et al. (1999). Limiting the proliferation and reactivity of retinal Müller cells during experimental retinal detachment: the value of oxygen supplementation. Am. J. Ophthalmol. 128 165–172. 10.1016/s0002-9394(99)00103-8 10458171
  • Li F. Jiang D. Samuel M. (2019). Microglia in the developing retina. Neural Dev. 14:12.
  • Li G. Osborne N. (2008). Oxidative-induced apoptosis to an immortalized ganglion cell line is caspase independent but involves the activation of poly(ADP-ribose)polymerase and apoptosis-inducing factor. Brain Res. 1188 35–43. 10.1016/j.brainres.2007.10.073 18053973
  • Li G. Luna C. Qiu J. Epstein D. Gonzalez P. (2010). Modulation of inflammatory markers by miR-146a during replicative senescence in trabecular meshwork cells. Invest. Ophthalmol. Vis. Sci. 51 2976–2985. 10.1167/iovs.09-4874 20053980
  • Li L. Xu L. Chen W. Li X. Xia Q. Zheng L. et al. (2018). Reduced Annexin A1 secretion by ABCA1 causes retinal inflammation and ganglion cell apoptosis in a murine Glaucoma model. Front. Cell Neurosci. 12:347. 10.3389/fncel.2018.00347 30364320
  • Li Y. Kang J. Horwitz M. (1998). Interaction of an adenovirus E3 14.7-kilodalton protein with a novel tumor necrosis factor alpha-inducible cellular protein containing leucine zipper domains. Mol. Cell Biol. 18 1601–1610. 10.1128/MCB.18.3.1601 9488477
  • Li Z. Okamoto K. Hayashi Y. Sheng M. (2004). The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119 873–887. 10.1016/j.cell.2004.11.003 15607982
  • Liddelow S. Barres B. (2017). Reactive astrocytes: production, function, and therapeutic potential. Immunity 46 957–967.
  • Liddelow S. Guttenplan K. Clarke L. Bennett F. Bohlen C. Schirmer L. et al. (2017). Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541 481–487.
  • Lin F. Cheng Y. Yu M. Ho J. der Kuo Y. (2019). The fungus-derived retinoprotectant theissenolactone C improves glaucoma-like injury mediated by MMP-9 inhibition. Phytomedicine 56 207–214. 10.1016/j.phymed.2018.11.002 30668341
  • Liu C. Wang X. Liu C. Zhang H. (2019). Pharmacological targeting of microglial activation: new therapeutic approach. Front. Cell Neurosci. 13:514. 10.3389/FNCEL.2019.00514 31803024
  • Liu J. Copland D. Theodoropoulou S. Chiu H. Barba M. Mak K. et al. (2016). Impairing autophagy in retinal pigment epithelium leads to inflammasome activation and enhanced macrophage-mediated angiogenesis. Sci. Rep. 6:20639. 10.1038/srep20639 26847702
  • Liu Y. Allingham R. (2017). Major review: molecular genetics of primary open-angle glaucoma. Exp. Eye Res. 160 62–84.
  • Liu Z. Li Y. Cui Y. Roberts C. Lu M. Wilhelmsson U. et al. (2014). Beneficial effects of gfap/vimentin reactive astrocytes for axonal remodeling and motor behavioral recovery in mice after stroke. Glia 62 2022–2033. 10.1002/glia.22723 25043249
  • López-Otín C. Blasco M. Partridge L. Serrano M. Kroemer G. (2013). The hallmarks of aging. Cell 153 1194–1217.
  • Lu Y. Iandiev I. Hollborn M. Korber N. Ulbricht E. Hirrlinger P. et al. (2011). Reactive glial cells: increased stiffness correlates with increased intermediate filament expression. FASEB J. 25 624–631. 10.1096/fj.10-163790 20974670
  • Luo C. Yang X. Kain A. Powell D. Kuehn M. Tezel G. (2010). Glaucomatous tissue stress and the regulation of immune response through glial toll-like receptor signaling. Invest. Ophthalmol. Vis. Sci. 51 5697–5707. 10.1167/iovs.10-5407 20538986
  • Luo X. Chen S. D. (2012). The changing phenotype of microglia from homeostasis to disease. Transl. Neurodegener. 1:9.
  • Lye J. Latorre E. Lee B. Bandinelli S. Holley J. Gutowski N. et al. (2019). Astrocyte senescence may drive alterations in GFAPα, CDKN2A p14 ARF, and TAU3 transcript expression and contribute to cognitive decline. Geroscience 41 561–573.
  • Ma W. Cojocaru R. Gotoh N. Gieser L. Villasmil R. Cogliati T. et al. (2013). Gene expression changes in aging retinal microglia: relationship to microglial support functions and regulation of activation. Neurobiol. Aging 34 2310–2321. 10.1016/j.neurobiolaging.2013.03.022 23608111
  • Ma W. Silverman S. Zhao L. Villasmil R. Campos M. Amaral J. et al. (2019). Absence of TGFβ signaling in retinal microglia induces retinal degeneration and exacerbates choroidal neovascularization. Elife 8:e42049.
  • Madeira M. Boia R. Santos P. Ambrósio A. Santiago A. (2015). Contribution of microglia-mediated neuroinflammation to retinal degenerative diseases. Mediators Inflamm 2015:673090.
  • Maier E. Duschl A. Horejs-Hoeck J. (2012). STAT6-dependent and -independent mechanisms in Th2 polarization. Eur. J. Immunol. 42 2827–2833.
  • Malone P. Hernandez M. (2007). 4-Hydroxynonenal, a product of oxidative stress, leads to an antioxidant response in optic nerve head astrocytes. Exp. Eye Res. 84 444–454. 10.1016/j.exer.2006.10.020 17173895
  • Mansour H. Chamberlain C. Weible M. Hughes S. Chu Y. Chan-Ling T. (2008). Aging-related changes in astrocytes in the rat retina: imbalance between cell proliferation and cell death reduces astrocyte availability. Aging Cell 7 526–540. 10.1111/j.1474-9726.2008.00402.x 18489730
  • Mantovani A. Sica A. Sozzani S. Allavena P. Vecchi A. Locati M. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25 677–686. 10.1016/j.it.2004.09.015 15530839
  • Martin K. Levkovitch-Verbin H. Valenta D. Baumrind L. Pease M. Quigley H. (2002). Retinal glutamate transporter changes in experimental Glaucoma and after optic nerve transection in the rat. Invest. Ophthalmol. Vis. Sci. 43 2236–2243. 12091422
  • Martin K. Quigley H. Valenta D. Kielczewski J. Pease M. (2006). Optic nerve dynein motor protein distribution changes with intraocular pressure elevation in a rat model of glaucoma. Exp. Eye Res. 83 255–262. 10.1016/j.exer.2005.11.025 16546168
  • Matias I. Morgado J. Gomes F. (2019). Astrocyte heterogeneity: impact to brain aging and disease. Front. Aging Neurosci. 11:59. 10.3389/FNAGI.2019.00059 30941031
  • Matsukawa A. Takeda K. Kudo S. Maeda T. Kagayama M. Akira S. (2003). Aberrant inflammation and lethality to septic peritonitis in mice lacking STAT3 in macrophages and neutrophils. J. Immunol. 171 6198–6205. 10.4049/jimmunol.171.11.6198 14634136
  • Matsumoto G. Shimogori T. Hattori N. Nukina N. (2015). TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation. Hum. Mol. Genet. 24 4429–4442. 10.1093/hmg/ddv179 25972374
  • McElnea E. Quill B. Docherty N. Irnaten M. Siah W. Clark A. et al. (2011). Oxidative stress, mitochondrial dysfunction and calcium overload in human lamina cribrosa cells from glaucoma donors. Mol. Vis. 17:1182. 21617752
  • McHugh D. Gil J. (2018). Senescence and aging: causes, consequences, and therapeutic avenues. J. Cell Biol. 217 65–77.
  • Mejias N. Martinez C. Stephens M. de Rivero Vaccari J. (2018). Contribution of the inflammasome to inflammaging. J. Inflamm. 15:1808.
  • Mélik Parsadaniantz S. Réaux-le Goazigo A. Sapienza A. Habas C. Baudouin C. (2020). Glaucoma: a degenerative optic neuropathy related to neuroinflammation? Cells 9:535.
  • Menet V. Prieto M. Privat A. Giménez y Ribotta M. (2003). Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes. Proc. Natl. Acad. Sci. U S A. 100 8999–9004. 10.1073/pnas.1533187100 12861073
  • Min K. Yang M. Kim S. Jou I. Joe E. (2006). Astrocytes induce hemeoxygenase-1 expression in microglia: a feasible mechanism for preventing excessive brain inflammation. J. Neurosci. 26 1880–1887. 10.1523/JNEUROSCI.3696-05.2006 16467537
  • Minckler D. McLean I. Tso M. (1976). Distribution of axonal and glial elements in the rhesus optic nerve head studied by electron microscopy. Am. J. Ophthalmol. 82 179–187. 10.1016/0002-9394(76)90416-5 821348
  • Mizee M. R. Nijland P. G. van der Pol S. M. A. Drexhage J. A. R. van het Hof B. Mebius R. et al. (2014). Astrocyte-derived retinoic acid: a novel regulator of blood-brain barrier function in multiple sclerosis. Acta Neuropathol. 128 691–703. 10.1007/s00401-014-1335-6 25149081
  • Moehle M. West A. (2015). M1 and M2 immune activation in Parkinson’s disease: Foe and ally? Neuroscience 302 59–73. 10.1016/j.neuroscience.2014.11.018 25463515
  • Mohri I. Taniike M. Taniguchi H. Kanekiyo T. Aritake K. Inui T. et al. (2006). Prostaglandin D2-mediated microglia/astrocyte interaction enhances astrogliosis and demyelination in twitcher. J. Neurosci. 26 4383–4393. 10.1523/JNEUROSCI.4531-05.2006 16624958
  • Mombach J. Vendrusculo B. Bugs C. (2015). A model for p38MAPK-induced astrocyte senescence. PLoS One 10:e0125217. 10.1371/JOURNAL.PONE.0125217 25954815
  • Moore D. Harris A. WuDunn D. Kheradiya N. Siesky B. (2008). Dysfunctional regulation of ocular blood flow: a risk factor for glaucoma? Clin. Ophthalmol. 2 849–861.
  • Moreno M. Campanelli J. Sande P. Sáenz D. Keller Sarmiento M. Rosenstein R. (2004). Retinal oxidative stress induced by high intraocular pressure. Free Radic. Biol. Med. 37 803–812.
  • Morgan J. (2004). Circulation and axonal transport in the optic nerve. Eye 18:11.
  • Morizawa Y. Hirayama Y. Ohno N. Shibata S. Shigetomi E. Sui Y. et al. (2017). Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nat. Commun. 8:1598.
  • Mosser D. Edwards J. (2008). Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8 958–969.
  • Munemasa Y. Kitaoka Y. Kuribayashi J. Ueno S. (2010). Modulation of mitochondria in the axon and soma of retinal ganglion cells in a rat glaucoma model. J. Neurochem. 115 1508–1519. 10.1111/j.1471-4159.2010.07057.x 20950337
  • Nakazawa T. Hisatomi T. Nakazawa C. Noda K. Maruyama K. She H. et al. (2007). Monocyte chemoattractant protein 1 mediates retinal detachment-induced photoreceptor apoptosis. Proc. Natl. Acad. Sci. 104 2425–2430. 10.1073/pnas.0608167104 17284607
  • Nakazawa T. Matsubara A. Noda K. Hisatomi T. She H. Skondra D. et al. (2006a). Characterization of cytokine responses to retinal detachment in rats. Mol. Vis. 12 867–878. 16917487
  • Nakazawa T. Nakazawa C. Matsubara A. Noda K. Hisatomi T. She H. et al. (2006b). Tumor necrosis factor-α mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma. J. Neurosci. 26 12633–12641. 10.1523/JNEUROSCI.2801-06.2006 17151265
  • Nelson P. Soma L. Lavi E. (2002). Microglia in diseases of the central nervous system. Ann. Med. 34 491–500.
  • Neufeld A. (1999). Nitric oxide: a potential mediator of retinal ganglion cell damage in glaucoma. Surv. Ophthalmol. 43 S129–S135.
  • Neufeld A. Liu B. (2003). Glaucomatous optic neuropathy: when glia misbehave. Neuroscientist 9 485–495. 10.1177/1073858403253460 14678581
  • Neumann H. Kotter M. Franklin R. (2009). Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132 288–295. 10.1093/brain/awn109 18567623
  • Newman E. Reichenbach A. (1996). The Müller cell: a functional element of the retina. Trends Neurosci. 19 307–312.
  • Nichols N. Day J. Laping N. Johnson S. Finch C. (1993). GFAP mRNA increases with age in rat and human brain. Neurobiol. Aging 14 421–429.
  • Nickells R. (2007). From ocular hypertension to ganglion cell death: a theoretical sequence of events leading to glaucoma. Can. J. Ophthalmol. 42 278–287. 17392853
  • Nickells R. Howell G. Soto I. John S. (2012). Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy. Annu. Rev. Neurosci. 35 153–179. 10.1146/annurev.neuro.051508.135728 22524788
  • Nicolela M. Ferrier S. Morrison C. Archibald M. LeVatte T. Wallace K. et al. (2003). Effects of cold-induced vasospasm in Glaucoma: the role of Endothelin-1. Invest. Ophthalmol. Vis. Sci. 44 2565–2572. 10.1167/iovs.02-0913 12766058
  • Nikolskaya T. Nikolsky Y. Serebryiskaya T. Zvereva S. Sviridov E. Dezso Z. et al. (2009). Network analysis of human glaucomatous optic nerve head astrocytes. BMC Med. Genomics 2:24. 10.1186/1755-8794-2-24 19426536
  • Nimmerjahn A. Kirchhoff F. Helmchen F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308 1314–1318.
  • Niraula A. Sheridan J. Godbout J. (2017). Microglia priming with aging and stress. Neuropsychopharmacology 42 318–333.
  • Nolan Y. Maher F. Martin D. Clarke R. Brady M. Bolton A. et al. (2005). Role of interleukin-4 in regulation of age-related inflammatory changes in the hippocampus. J Biol. Chem. 280 9354–9362.
  • Norden D. Godbout J. (2013). Review: microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol. Appl. Neurobiol. 39 19–34.
  • Norden D. Fenn A. Dugan A. Godbout J. (2014). TGFβ produced by IL-10 redirected astrocytes attenuates microglial activation. Glia 62 881–895.
  • Norden D. Trojanowski P. Walker F. Godbout J. (2016). Insensitivity of astrocytes to interleukin 10 signaling following peripheral immune challenge results in prolonged microglial activation in the aged brain. Neurobiol. Aging 44 22–41. 10.1016/j.neurobiolaging.2016.04.014 27318131
  • Noske W. Hensen J. Wiederholt M. Noske W. Hensen J. Wiederholt M. (1997). Endothelin-like immunoreactivity in aqueous humor of patients with primary open-angle glaucoma and cataract. Graefe’s arch. Clin. Exp. Ophthalmol. 235 551–552. 10.1007/BF00947082 9342603
  • Nouri-Mahdavi K. Hoffman D. Coleman A. Liu G. Li G. Gaasterland D. et al. (2004). Predictive factors for glaucomatous visual field progression in the advanced Glaucoma intervention study. Ophthalmology 111 1627–1635.
  • Nucci C. Tartaglione R. Rombolà L. Morrone L. Fazzi E. Bagetta G. (2005). Neurochemical evidence to implicate elevated glutamate in the mechanisms of high Intraocular Pressure (IOP)-induced retinal ganglion cell death in rat. Neurotoxicology 26 935–941. 10.1016/j.neuro.2005.06.002 16126273
  • O’Brien J. Hayder H. Zayed Y. Peng C. (2018). Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 9:388354. 10.3389/FENDO.2018.00402/BIBTEX
  • Oksanen M. Lehtonen S. Jaronen M. Goldsteins G. Hämäläinen R. Koistinaho J. (2019). Astrocyte alterations in neurodegenerative pathologies and their modeling in human induced pluripotent stem cell platforms. Cell Mol. Life Sci. 76 2739–2760. 10.1007/s00018-019-03111-7 31016348
  • Orre M. Kamphuis W. Osborn L. Melief J. Kooijman L. Huitinga I. et al. (2014). Acute isolation and transcriptome characterization of cortical astrocytes and microglia from young and aged mice. Neurobiol. Aging 35 1–14. 10.1016/j.neurobiolaging.2013.07.008 23954174
  • Ou-Yang Y. Liu Z. Xu C. Wu J. Peng J. Peng Q. (2020). miR-223 induces retinal ganglion cells apoptosis and inflammation via decreasing HSP-70 in vitro and in vivo. J. Chem. Neuroanat. 104:101747. 10.1016/j.jchemneu.2020.101747 31952976
  • Park K. Lee D. Joe E. Kim S. Jin B. (2005). Neuroprotective role of microglia expressing interleukin-4. J. Neurosci. Res. 81 397–402.
  • Parpura V. Heneka M. Montana V. Oliet S. Schousboe A. Haydon P. et al. (2012). Glial cells in (patho)physiology. J. Neurochem. 121 4–27.
  • Patel D. Tewari B. Chaunsali L. Sontheimer H. (2019). Neuron–glia interactions in the pathophysiology of epilepsy. Nat. Rev. Neurosci. 20 282–297.
  • Pekny M. Pekna M. (2004). Astrocyte intermediate filaments in CNS pathologies and regeneration. J. Pathol. 204 428–437.
  • Peng L. Parpura V. Verkhratsky A. (2014). Editorial (thematic issue: neuroglia as a central element of neurological diseases: an underappreciated target for therapeutic intervention). Curr. Neuropharmacol. 12 303–307. 10.2174/1570159X12999140829152550 25342938
  • Perez-Nievas B. Serrano-Pozo A. (2018). Deciphering the astrocyte reaction in Alzheimer’s disease. Front. Aging Neurosci. 10:114. 10.3389/FNAGI.2018.00114 29922147
  • Perry V. O’Connor V. (2010). The role of microglia in synaptic stripping and synaptic degeneration: a revised perspective. ASN Neuro 2:e00047. 10.1042/AN20100024 20967131
  • Polak K. Luksch A. Berisha F. Fuchsjaeger-Mayrl G. Dallinger S. Schmetterer L. (2007). Altered nitric oxide system in patients with open-angle glaucoma. Arch. Ophthalmol. 125 494–498.
  • Ponath G. Ramanan S. Mubarak M. Housley W. Lee S. Sahinkaya F. et al. (2017). Myelin phagocytosis by astrocytes after myelin damage promotes lesion pathology. Brain 140 399–413.
  • Porchet R. Probst A. Bouras C. Dráberová E. Dráber P. Riederer B. M. (2003). Analysis of glial acidic fibrillary protein in the human entorhinal cortex during aging and in Alzheimer’s disease. Proteomics 3 1476–1485.
  • Prata L. Ovsyannikova I. Tchkonia T. Kirkland J. (2018). Senescent cell clearance by the immune system: emerging therapeutic opportunities. Semin. Immunol. 40:101275.
  • Prieto G. Cotman C. (2017). Cytokines and cytokine networks target neurons to modulate long-term potentiation. Cytokine Growth Factor Rev. 34 27–33.
  • Primiani C. Ryan V. Rao J. Cam M. Ahn K. Modi H. et al. (2014). Coordinated gene expression of neuroinflammatory and cell signaling markers in dorsolateral prefrontal cortex during human brain development and aging. PLoS One 9:e110972. 10.1371/JOURNAL.PONE.0110972 25329999
  • Qian Y. Liu C. Hartupee J. Altuntas C. Gulen M. Jane-Wit D. et al. (2007). The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat. Immunol. 8 247–256. 10.1038/ni1439 17277779
  • Qu J. Jakobs T. (2013). The time course of gene expression during reactive gliosis in the optic nerve. PLoS One 8:e67094. 10.1371/journal.pone.0067094 23826199
  • Quaranta L. Bruttini C. Micheletti E. Konstas A. Michelessi M. Oddone F. et al. (2021). Glaucoma and neuroinflammation: an overview. Surv. Ophthalmol. 66 693–713.
  • Quigley H. (1999). Neuronal death in glaucoma. Prog. Retin Eye Res. 18 39–57.
  • Quigley H. (2005a). Glaucoma: macrocosm to microcosm the friedenwald lecture. Invest. Ophthalmol. Vis. Sci. 46 2663–2670. 10.1167/iovs.04-1070 16043835
  • Quigley H. (2005b). New paradigms in the mechanisms and management of glaucoma. Eye 19 1241–1248.
  • Quigley H. (2011). Glaucoma. Lancet 377 1367–1377.
  • Quigley H. Broman A. (2006). The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 90 262–267.
  • Quigley H. McKinnon S. Zack D. Pease M. Kerrigan-Baumrind L. Kerrigan D. et al. (2000). Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest. Ophthalmol. Vis. Sci. 41 3460–3466. 11006239
  • Quillen S. Schaub J. Quigley H. Pease M. Korneva A. Kimball E. (2020). Astrocyte responses to experimental glaucoma in mouse optic nerve head. PLoS One 15:e0238104. 10.1371/journal.pone.0238104 32822415
  • Ramírez A. de Hoz R. Fernández-Albarral J. Salobrar-García E. Rojas B. Valiente-Soriano F. et al. (2020a). Time course of bilateral microglial activation in a mouse model of laser-induced glaucoma. Sci. Rep. 10:4890. 10.1038/s41598-020-61848-9 32184450
  • Ramirez A. de Hoz R. Salobrar-Garcia E. Salazar J. Rojas B. Ajoy D. et al. (2017). The role of microglia in retinal neurodegeneration: Alzheimer’s disease, Parkinson, and glaucoma. Front. Aging Neurosci. 9:214. 10.3389/fnagi.2017.00214 28729832
  • Ramírez A. Fernández-Albarral J. de Hoz R. López-Cuenca I. Salobrar-García E. Rojas P. et al. (2020b). Microglial changes in the early aging stage in a healthy retina and an experimental glaucoma model. Prog. Brain Res. 256 125–149. 10.1016/bs.pbr.2020.05.024 32958210
  • Ramírez J. Ramírez A. Salazar J. de Hoz R. Triviño A. (2001). Changes of astrocytes in retinal ageing and age-related macular degeneration. Exp. Eye Res. 73 601–615.
  • Reinehr S. Mueller-Buehl A. Tsai T. Joachim S. (2022). Specific biomarkers in the aqueous humour of Glaucoma patients. Klin Monbl Augenheilkd 239 169–176.
  • Richter B. Sliter D. Herhaus L. Stolz A. Wang C. Beli P. et al. (2016). Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl. Acad. Sci. 113 4039–4044. 10.1073/pnas.1523926113 27035970
  • Rifkin I. Leadbetter E. Busconi L. Viglianti G. Marshak-Rothstein A. (2005). Toll-like receptors, endogenous ligands, and systemic autoimmune disease. Immunol. Rev. 204 27–42.
  • Ritch R. Darbro B. Menon G. Khanna C. Solivan-Timpe F. Roos B. et al. (2014). TBK1 gene duplication and normal-tension Glaucoma. JAMA Ophthalmol. 132 544–548.
  • Ritzel R. Patel A. Pan S. Crapser J. Hammond M. Jellison E. et al. (2015). Age- and location-related changes in microglial function. Neurobiol. Aging 36 2153–2163. 10.1016/j.neurobiolaging.2015.02.016 25816747
  • Rizzo M. Greco A. de Virgilio A. Gallo A. Taverniti L. Fusconi M. et al. (2017). Glaucoma: recent advances in the involvement of autoimmunity. Immunol. Res. 65 207–217.
  • Roberts M. Sigal I. Liang Y. Burgoyne C. Crawford Downs J. (2010). Changes in the biomechanical response of the optic nerve head in early experimental glaucoma. Invest Ophthalmol. Vis. Sci. 51 5675–5684.
  • Robillard K. Lee K. Chiu K. MacLean A. (2016). Glial cell morphological and density changes through the lifespan of rhesus macaques. Brain Behav. Immun. 55 60–69. 10.1016/j.bbi.2016.01.006 26851132
  • Rodríguez J. Butt A. Gardenal E. Parpura V. Verkhratsky A. (2016). Complex and differential glial responses in Alzheimer’s disease and ageing. Curr. Alzheimer Res. 13 343–358.
  • Rodríguez J. Yeh C. Terzieva S. Olabarria M. Kulijewicz-Nawrot M. Verkhratsky A. (2014). Complex and region-specific changes in astroglial markers in the aging brain. Neurobiol. Aging 35 15–23. 10.1016/j.neurobiolaging.2013.07.002 23969179
  • Rolle T. Ponzetto A. Malinverni L. (2021). The role of neuroinflammation in Glaucoma: an update on molecular mechanisms and new therapeutic options. Front. Neurol. 11:612422. 10.3389/fneur.2020.612422 33613418
  • Rostami J. Fotaki G. Sirois J. Mzezewa R. Bergström J. Essand M. et al. (2020). Astrocytes have the capacity to act as antigen-presenting cells in the Parkinson’s disease brain. J. Neuroinflammation 17 119. 10.1186/s12974-020-01776-7 32299492
  • Rothstein J. Dykes-Hoberg M. Pardo C. Bristol L. Jin L. Kuncl R. et al. (1996). Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16 675–686. 10.1016/s0896-6273(00)80086-0 8785064
  • Roubenoff R. Harris T. Abad L. Wilson P. Dallal G. Dinarello C. (1998). Monocyte cytokine production in an elderly population: effect of age and inflammation. J. Gerontol. A Biol. Sci. Med. Sci. 53 M20–M26. 10.1093/gerona/53a.1.m20 9467429
  • Rus H. Cudrici C. Niculescu F. (2005). The role of the complement system in innate immunity. Immunol. Res. 33 103–112.
  • Russo M. V. McGavern D. (2016). Inflammatory neuroprotection following traumatic brain injury. Science 353 783–785.
  • Russo R. Varano G. Adornetto A. Nucci C. Corasaniti M. Bagetta G. et al. (2016). Retinal ganglion cell death in glaucoma: exploring the role of neuroinflammation. Eur. J. Pharmacol. 787 134–142.
  • Saccà S. Pascotto A. Camicione P. Capris P. Izzotti A. (2005). Oxidative DNA damage in the human trabecular meshwork: clinical correlation in patients with primary open-angle glaucoma. Arch. Ophthalmol. 123 458–463. 10.1001/archopht.123.4.458 15824217
  • Safaiyan S. Kannaiyan N. Snaidero N. Brioschi S. Biber K. Yona S. et al. (2016). Age-related myelin degradation burdens the clearance function of microglia during aging. Nat. Neurosci. 19 995–998. 10.1038/nn.4325 27294511
  • Saijo K. Winner B. Carson C. Collier J. Boyer L. Rosenfeld M. et al. (2009). A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137 47–59. 10.1016/j.cell.2009.01.038 19345186
  • Sakami S. Imanishi Y. Palczewski K. (2019). Müller glia phagocytose dead photoreceptor cells in a mouse model of retinal degenerative disease. FASEB J. 33 3680–3692.
  • Saliminejad K. Khorram Khorshid H. Soleymani Fard S. Ghaffari S. (2019). An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J. Cell Physiol. 234 5451–5465.
  • Salminen A. Ojala J. Kaarniranta K. Haapasalo A. Hiltunen M. Soininen H. (2011). Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur. J. Neurosci. 34 3–11.
  • Sappington R. Calkins D. (2008). Contribution of TRPV1 to microglia-derived IL-6 and NFκB translocation with elevated hydrostatic pressure. Invest. Ophthalmol. Vis. Sci. 49 3004–3017.
  • Sarlus H. Heneka M. (2017). Microglia in Alzheimer’s disease. J. Clin. Invest. 127 3240–3249.
  • Sasaki A. (2017). Microglia and brain macrophages: an update. Neuropathology 37 452–464.
  • Satilmis M. Orgül S. Doubler B. Flammer J. (2003). Rate of progression of glaucoma correlates with retrobulbar circulation and intraocular pressure. Am. J. Ophthalmol. 135 664–669. 10.1016/s0002-9394(02)02156-6 12719074
  • Sawada H. Fukuchi T. Tanaka T. Abe H. (2010). Tumor necrosis factor-α concentrations in the aqueous humor of patients with Glaucoma. Invest. Ophthalmol. Vis. Sci. 51 903–906. 10.1167/iovs.09-4247 19737888
  • Schetters S. Gomez-Nicola D. Garcia-Vallejo J. van Kooyk Y. (2018). Neuroinflammation: microglia and T cells get ready to tango. Front. Immunol. 8:1905. 10.3389/FIMMU.2017.01905 29422891
  • Schilling T. Nitsch R. Heinemann U. Haas D. Eder C. (2001). Astrocyte-released cytokines induce ramification and outward K+ channel expression in microglia via distinct signalling pathways. Eur. J. Neurosci. 14 463–473. 10.1046/j.0953-816x.2001.01661.x 11553296
  • Schmidl D. Garhofer G. Schmetterer L. (2011). The complex interaction between ocular perfusion pressure and ocular blood flow - relevance for glaucoma. Exp. Eye Res. 93 141–155. 10.1016/j.exer.2010.09.002 20868686
  • Schumacher B. Pothof J. Vijg J. Hoeijmakers J. (2021). The central role of DNA damage in the ageing process. Nature 592 695–703.
  • Seitz R. Tamm E. (2013). N-methyl-D-aspartate (NMDA)-mediated excitotoxic damage: a mouse model of acute retinal ganglion cell damage. Methods Mol. Biol. 935 99–109. 10.1007/978-1-62703-080-9_7 23150363
  • Seitz R. Ohlmann A. Tamm E. (2013). The role of Müller glia and microglia in glaucoma. Cell Tissue Res. 353 339–345.
  • Seoane M. Costoya J. Arce V. (2017). Uncoupling Oncogene-Induced Senescence (OIS) and DNA Damage Response (DDR) triggered by DNA hyper-replication: lessons from primary mouse embryo astrocytes (MEA). Sci. Rep. 7:12991. 10.1038/s41598-017-13408-x 29021613
  • Shahidehpour R. K. Higdon R. E. Crawford N. G. Neltner J. H. lghodaro E. T. Patel E. et al. (2021). Dystrophic microglia are associated with neurodegenerative disease and not healthy aging in the human brain. Neurobiol. Aging 99 19–27.
  • Sica A. Mantovani A. (2012). Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122 787–795. 10.1172/JCI59643 22378047
  • Siegner S. Netland P. (1996). Optic disc hemorrhages and progression of glaucoma. Ophthalmology 103 1014–1024.
  • Sierra A. Gottfried-Blackmore A. Mcewen B. Bulloch K. (2007). Microglia derived from aging mice exhibit an altered inflammatory profile. Glia 55 412–424.
  • Silverman S. Wong W. (2018). Microglia in the retina: roles in development. maturity, and disease. Annu. Rev. Vis. Sci. 4 45–77.
  • Silverman W. de Rivero Vaccari J. Locovei S. Qiu F. Carlsson S. Scemes E. et al. (2009). The Pannexin 1 channel activates the inflammasome in neurons and astrocytes. J. Biol. Chem. 284 18143–18151.
  • Simmons D. Casale M. Alcon B. Pham N. Narayan N. Lynch G. (2007). Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington’s disease. Glia 55 1074–1084. 10.1002/glia.20526 17551926
  • Skrzypecki J. Ufnal M. Szaflik J. Filipiak K. (2019). Blood pressure and glaucoma: at the crossroads between cardiology and ophthalmology. Cardiol. J. 26 8–12. 10.5603/CJ.2019.0008 30882185
  • Skytt D. Klawonn A. Stridh M. Pajecka K. Patruss Y. Quintana-Cabrera R. et al. (2012). siRNA knock down of glutamate dehydrogenase in astrocytes affects glutamate metabolism leading to extensive accumulation of the neuroactive amino acids glutamate and aspartate. Neurochem. Int. 61 490–497. 10.1016/j.neuint.2012.04.014 22542772
  • Smith C. Wheeler M. Marjoram L. Bagnat M. Deppmann C. Kucenas S. (2017). TNFa/TNFR2 signaling is required for glial ensheathment at the dorsal root entry zone. PLoS Genet. 13:e1006712. 10.1371/JOURNAL.PGEN.1006712 28379965
  • Sofroniew M. V. (2009). Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 32 638–647.
  • Sofroniew M. V. (2014). Astrogliosis. Cold Spring Harb. Perspect. Biol. 7:a020420.
  • Song B. Aiello L. Pasquale L. (2016). Presence and risk factors for Glaucoma in patients with diabetes. Curr. Diab. Rep. 16:124.
  • Soreq L. Rose J. Soreq E. Hardy J. Trabzuni D. Cookson M. et al. (2017). Major shifts in glial regional identity are a transcriptional hallmark of human brain aging. Cell Rep. 18 557–570. 10.1016/j.celrep.2016.12.011 28076797
  • Soto I. Howell G. (2014). The complex role of neuroinflammation in glaucoma. Cold Spring Harb. Perspect. Med. 4 a017269–a017269.
  • Souza D. Bellaver B. Raupp G. Souza D. Quincozes-Santos A. (2015). Astrocytes from adult Wistar rats aged in vitro show changes in glial functions. Neurochem. Int. 90 93–97.
  • Spalding K. Bergmann O. Alkass K. Bernard S. Salehpour M. Huttner H. et al. (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell 153 1219–1227.
  • Sreekumar P. Hinton D. Kannan R. Martin P. (2020). The emerging role of senescence in ocular disease. Oxid. Med. Cell Longev. 2020:2583601.
  • Stasi K. Nagel D. Yang X. Wang R. Ren L. Podos S. et al. (2006). Complement component 1Q (C1Q) upregulation in retina of murine, primate, and human glaucomatous eyes. Invest. Ophthalmol. Vis. Sci. 47 1024–1029.
  • Steinmetz C. Turrigiano G. (2010). Tumor necrosis factor-α signaling maintains the ability of cortical synapses to express synaptic scaling. J. Neurosci. 30 14685–14690. 10.1523/JNEUROSCI.2210-10.2010 21048125
  • Stephan A. Madison D. V. Mateos J. Fraser D. Lovelett E. Coutellier L. et al. (2013). A dramatic increase of C1q protein in the CNS during normal aging. J. Neurosci. 33 13460–13474. 10.1523/JNEUROSCI.1333-13.2013 23946404
  • Stephenson J. Nutma E. van der Valk P. Amor S. (2018). Inflammation in CNS neurodegenerative diseases. Immunology 154 204–219.
  • Stevens B. Allen N. Vazquez L. Howell G. Christopherson K. Nouri N. et al. (2007). The classical complement cascade mediates CNS synapse elimination. Cell 131 1164–1178.
  • Stoilov I. Akarsu A. Sarfarazi M. (1997). Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum. Mol. Genet. 6 641–647. 10.1093/hmg/6.4.641 9097971
  • Stone E. Fingert J. Alward W. Nguyen T. Polansky J. Sunden S. et al. (1997). Identification of a gene that causes primary open angle glaucoma. Science 275 668–670.
  • Streit W. Braak H. Xue Q. Bechmann I. (2009). Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol. 118 475–485. 10.1007/s00401-009-0556-6 19513731
  • Streit W. Sammons N. Kuhns A. Sparks D. (2004). Dystrophic microglia in the aging human brain. Glia 45 208–212.
  • Stuart K. V. Pasquale L. Kang J. Foster P. Khawaja A. (2023). Towards modifying the genetic predisposition for glaucoma: an overview of the contribution and interaction of genetic and environmental factors. Mol. Aspects Med. 93:101203. 10.1016/j.mam.2023.101203 37423164
  • Su W. Li Z. Jia Y. Zhu Y. Cai W. Wan P. et al. (2017). microRNA-21a-5p/PDCD4 axis regulates mesenchymal stem cell-induced neuroprotection in acute glaucoma. J. Mol. Cell Biol. 9 289–301.
  • Swanson R. Ying W. Kauppinen T. (2004). Astrocyte influences on ischemic neuronal death. Curr. Mol. Med. 4 193–205.
  • Tabak S. Schreiber-Avissar S. Beit-Yannai E. (2021). Crosstalk between MicroRNA and oxidative stress in primary open-angle Glaucoma. Int. J. Mol. Sci. 22:2421.
  • Tamm E. Ethier C. Lasker IIoA and Glaucomatous Neurodegeneration Participants. (2017). Biological aspects of axonal damage in glaucoma: a brief review. Exp. Eye Res. 157 5–12.
  • Tan C. Hu T. Peng M. Liu S. Tong J. Ouyang W. et al. (2015). Age of rats seriously affects the degree of retinal damage induced by acute high intraocular pressure. Curr. Eye Res. 40 300–306. 10.3109/02713683.2014.922194 25153540
  • Tan Z. Beiser A. Vasan R. Roubenoff R. Dinarello C. Harris T. et al. (2007). Inflammatory markers and the risk of Alzheimer disease: the framingham study. Neurology 68 1902–1908.
  • Tang B. Li S. Cao W. Sun X. (2019). The association of oxidative stress status with open-angle glaucoma and exfoliation Glaucoma: a systematic review and meta-analysis. J. Ophthalmol. 2019:1803619. 10.1155/2019/1803619 30766729
  • Tang Y. Le W. (2016). Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol. Neurobiol. 53 1181–1194.
  • Taylor J. Moore Z. Minter M. Crack P. (2018). Type-I interferon pathway in neuroinflammation and neurodegeneration: focus on Alzheimer’s disease. J. Neural Transm. 125 797–807. 10.1007/s00702-017-1745-4 28676934
  • Tegeler C. O’Sullivan J. Bucholtz N. Goldeck D. Pawelec G. Steinhagen-Thiessen E. et al. (2016). The inflammatory markers CRP, IL-6, and IL-10 are associated with cognitive function–data from the Berlin aging study II. Neurobiol Aging 38 112–117. 10.1016/j.neurobiolaging.2015.10.039 26827649
  • Tehrani S. Davis L. Cepurna W. Choe T. Lozano D. Monfared A. et al. (2016). Astrocyte structural and molecular response to elevated intraocular pressure occurs rapidly and precedes axonal tubulin rearrangement within the optic nerve head in a rat model. PLoS One 11:e0167364. 10.1371/JOURNAL.PONE.0167364 27893827
  • Tezel G. (2006). Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog. Retin. Eye Res. 25 490–513.
  • Tezel G. (2011). The immune response in glaucoma: a perspective on the roles of oxidative stress. Exp. Eye Res. 93 178–186. 10.1016/j.exer.2010.07.009 20709058
  • Tezel G. (2013). Immune regulation toward immunomodulation for neuroprotection in glaucoma. Curr. Opin. Pharmacol. 13 23–31.
  • Tezel G. (2022). Molecular regulation of neuroinflammation in glaucoma: current knowledge and the ongoing search for new treatment targets. Prog. Retin. Eye Res. 87:100998. 10.1016/j.preteyeres.2021.100998 34348167
  • Tezel G. Wax M. (2000). Increased production of tumor necrosis factor-α by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells. J. Neurosci. 20 8693–8700. 10.1523/JNEUROSCI.20-23-08693.2000 11102475
  • Tezel G. Yang X. (2004). Caspase-independent component of retinal ganglion cell death. In Vitro. Invest. Ophthalmol. Vis. Sci. 45 4049–4059.
  • Tezel G. Hernandez M. Wax M. (2001). In vitro evaluation of reactive astrocyte migration, a component of tissue remodeling in glaucomatous optic nerve head. Glia 34 178–189. 10.1002/glia.1052 11329180
  • Tezel G. Kass M. Kolker A. Becker B. Wax M. (1997). Plasma and aqueous humor endothelin levels in primary open-angle glaucoma. J. Glaucoma 6 83–89.
  • Tezel G. Yang X. Cai J. (2005). Proteomic identification of oxidatively modified retinal proteins in a chronic pressure-induced rat model of glaucoma. Invest. Ophthalmol. Vis. Sci. 46 3177–3187. 10.1167/iovs.05-0208 16123417
  • Tezel G. Yang X. Luo C. Cai J. Powell D. (2012). An astrocyte-specific proteomic approach to inflammatory responses in experimental rat glaucoma. Invest. Ophthalmol. Vis. Sci. 53 4220–4233. 10.1167/iovs.11-9101 22570341
  • Toda N. Nakanishi-Toda M. (2007). Nitric oxide: ocular blood flow, glaucoma, and diabetic retinopathy. Prog. Retin. Eye Res. 26 205–238.
  • Toft-Kehler A. Skytt D. Svare A. Lefevere E. van Hove I. Moons L. et al. (2017). Mitochondrial function in Müller cells - does it matter? Mitochondrion 36 43–51.
  • Torres-Platas S. Comeau S. Rachalski A. Bo G. Cruceanu C. Turecki G. et al. (2014). Morphometric characterization of microglial phenotypes in human cerebral cortex. J. Neuroinflammation 11:12. 10.1186/1742-2094-11-12 24447857
  • Tremblay M. È Zettel M. L. Ison J. R. Allen P. D. Majewska A. K. (2012). Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia 60 541–558. 10.1002/glia.22287 22223464
  • Tucker B. Solivan-Timpe F. Roos B. Anfinson K. Robin A. Wiley L. et al. (2014). Duplication of TBK1 stimulates autophagy in iPSC-derived retinal cells from a patient with normal tension glaucoma. J. Stem Cell Res. Ther. 3:161. 10.4172/2157-7633.1000161 24883232
  • Tunny T. Richardson K. Clark C. V. (1998). Association study of the 5’ flanking regions of endothelial-nitric oxide synthase and endothelin-1 genes in familial primary open-angle glaucoma. Clin. Exp. Pharmacol. Physiol. 25 26–29. 10.1111/j.1440-1681.1998.tb02138.x 9493554
  • Turnquist C. Beck J. Horikawa I. Obiorah I. von Muhlinen N. Vojtesek B. et al. (2019). Radiation-induced astrocyte senescence is rescued by Δ133p53. Neuro Oncol. 21 474–485. 10.1093/neuonc/noz001 30615147
  • Underhill D. Ozinsky A. (2002). Toll-like receptors: key mediators of microbe detection. Curr. Opin. Immunol. 14 103–110.
  • Unterlauft J. Eichler W. Kuhne K. Mei Yang X. Yafai Y. Wiedemann P. et al. (2012). Pigment epithelium-derived factor released by mü ller glial cells exerts neuroprotective effects on retinal ganglion cells. Neurochem. Res. 37 1524–1533. 10.1007/s11064-012-0747-8 22410737
  • Varadhan R. Yao W. Matteini A. Beamer B. Xue Q. Yang H. et al. (2014). Simple biologically informed inflammatory index of two serum cytokines predicts 10 year all-cause mortality in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 69 165–173. 10.1093/gerona/glt023 23689826
  • Vay S. Olschewski D. Petereit H. Lange F. Nazarzadeh N. Gross E. et al. (2021). Osteopontin regulates proliferation, migration, and survival of astrocytes depending on their activation phenotype. J. Neurosci. Res. 99 2822–2843. 10.1002/jnr.24954 34510519
  • Vohra R. Dalgaard L. Vibæk J. Langbøl M. Bergersen L. Olsen N. et al. (2019). Potential metabolic markers in glaucoma and their regulation in response to hypoxia. Acta Ophthalmol. 97 567–576. 10.1111/aos.14021 30690927
  • von Bernhardi R. Eugenín-von Bernhardi L. Eugenín J. (2015). Microglial cell dysregulation in brain aging and neurodegeneration. Front. Aging Neurosci. 7:124. 10.3389/FNAGI.2015.00124 26257642
  • Walker D. Lue L. (2015). Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimers Res. Ther. 7:56. 10.1186/s13195-015-0139-9 26286145
  • Walker F. Beynon S. Jones K. Zhao Z. Kongsui R. Cairns M. et al. (2014). Dynamic structural remodelling of microglia in health and disease: a review of the models, the signals and the mechanisms. Brain Behav. Immun. 37 1–14. 10.1016/j.bbi.2013.12.010 24412599
  • Walker J. Low K. Fletcher M. Cohen N. Gratton G. Fabiani M. (2017). Hippocampal structure predicts cortical indices of reactivation of related items. Neuropsychologia 95 182–192. 10.1016/j.neuropsychologia.2016.12.005 27939369
  • Waller R. Baxter L. Fillingham D. Coelho S. Pozo J. Mozumder M. et al. (2019). Iba-1-/CD68+ microglia are a prominent feature of age-associated deep subcortical white matter lesions. PLoS One 14:e0210888. 10.1371/JOURNAL.PONE.0210888 30682074
  • Wang J. Chen S. da Zhang X. Jonas J. (2016). Retinal microglia in glaucoma. J. Glaucoma 25 459–465.
  • Wang L. Cioffi G. Cull G. Dong J. Fortune B. (2002). Immunohistologic evidence for retinal glial cell changes in human Glaucoma. Invest. Ophthalmol. Vis. Sci. 43 1088–1094. 11923250
  • Wang L. Dong J. Cull G. Fortune B. Cioffi G. (2003). Varicosities of intraretinal ganglion cell axons in human and nonhuman primates. Invest. Ophthalmol. Vis. Sci. 44 2–9. 10.1167/iovs.02-0333 12506048
  • Wang M. Wong W. (2014). Microglia-Müller cell interactions in the retina. Adv. Exp. Med. Biol. 801 333–338.
  • Wang Y. Chen S. Wang J. Liu Y. Chen Y. Wen T. et al. (2021). MicroRNA-93/STAT3 signalling pathway mediates retinal microglial activation and protects retinal ganglion cells in an acute ocular hypertension model. Cell Death Dis. 12:41. 10.1038/s41419-020-03337-5 33414426
  • Wang Y. Xu E. Musich P. Lin F. (2019). Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci. Ther. 25 816–824.
  • Wang Y. Zhou H. Liu X. Han Y. Pan S. Wang Y. (2018). MIR-181a inhibits human trabecular meshwork cell apoptosis induced by H2O2 through the suppression of NF-κB and JNK pathways. Adv. Clin. Exp. Med. 27 577–582.
  • Wang Z. Wiggs J. Aung T. Khawaja A. Khor C. (2022). The genetic basis for adult onset glaucoma: recent advances and future directions. Prog. Retin. Eye Res. 90:101066. 10.1016/j.preteyeres.2022.101066 35589495
  • Wassell J. Davies S. Bardsley W. Boulton M. (1999). The photoreactivity of the retinal age pigment lipofuscin. J. Biol. Chem. 274 23828–23832.
  • Wax M. B. Tezel G. Yang J. Peng G. Patil R. V. Agarwal N. et al. (2008). Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand. J. Neurosci. 28 12085–12096. 10.1523/JNEUROSCI.3200-08.2008 19005073
  • Weber A. Harman C. Viswanathan S. (2008). Effects of optic nerve injury, glaucoma, and neuroprotection on the survival, structure, and function of ganglion cells in the mammalian retina. J. Physiol. 586 4393–4400.
  • Weber M. Wu T. Hanson J. Alam N. Solanoy H. Ngu H. et al. (2015). Cognitive deficits, changes in synaptic function, and brain pathology in a mouse model of normal aging(1,2,3). ENeuro 2:ENEURO.0047-15.2015 10.1523/ENEURO.0047-15.2015 26473169
  • Weinreb R. Tee Khaw P. (2004). Primary open-angle glaucoma. Lancet 363 1711–1720.
  • Weinreb R. Leung C. Crowston J. Medeiros F. Friedman D. Wiggs J. et al. (2016). Primary open-angle glaucoma. Nat. Rev. Dis. Primers 2:16067.
  • West A. Shadel G. (2017). Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol. 17 363–375.
  • WHO (2019). World Report on Vision. Geneva: World Health Organization.
  • Wiggs J. (2015). Glaucoma genes and mechanisms. Prog. Mol. Biol. Transl. Sci. 134 315–342.
  • Wilkins H. Carl S. Greenlief A. Festoff B. Swerdlow R. (2014). Bioenergetic dysfunction and inflammation in Alzheimer’s disease: a possible connection. Front. Aging Neurosci. 6:311. 10.3389/FNAGI.2014.00311 25426068
  • Wilkins H. Weidling I. Ji Y. Swerdlow R. (2017). Mitochondria-derived damage-associated molecular patterns in neurodegeneration. Front. Immunol. 8:508. 10.3389/FIMMU.2017.00508 28491064
  • Williams J. Stampoulis D. Gunter C. Greenwood J. Adamson P. Moss S. (2016). Regulation of C3 activation by the alternative complement pathway in the mouse retina. PLoS One 11:e0161898. 10.1038/s41467-018-05681-9 30097565
  • Wolf S. Boddeke H. Kettenmann H. (2017). Microglia in physiology and disease. Annu. Rev. 79 619–643.
  • Wynne A. Henry C. Huang Y. Cleland A. Godbout J. (2010). Protracted downregulation of CX3CR1 on microglia of aged mice after lipopolysaccharide challenge. Brain Behav. Immun. 24 1190–1201. 10.1016/j.bbi.2010.05.011 20570721
  • Wyss-Coray T. Mucke L. (2002). Inflammation in neurodegenerative disease–a double-edged sword. Neuron 35 419–432.
  • Xia J. Lim J. Lu W. Beckel J. Macarak E. Laties A. et al. (2012). Neurons respond directly to mechanical deformation with pannexin-mediated ATP release and autostimulation of P2X7 receptors. J. Physiol. 590 2285–2304. 10.1113/jphysiol.2012.227983 22411013
  • Xu H. Chen M. Forrester J. V. (2009). Para-inflammation in the aging retina. Prog. Retin. Eye Res. 28 348–368.
  • Xue Y. Nie D. Wang L. Qiu H. Ma L. Dong M. et al. (2021). Microglial polarization: novel therapeutic strategy against ischemic stroke. Aging Dis. 12 466–479.
  • Yamanaka K. Komine O. (2018). The multi-dimensional roles of astrocytes in ALS. Neurosci. Res. 126 31–38. 10.1016/j.neures.2017.09.011 29054467
  • Yan X. Tezel G. Wax M. Edward D. (2000). Matrix metalloproteinases and tumor necrosis factor α in glaucomatous optic nerve head. Arch. Ophthalmol. 118 666–673. 10.1001/archopht.118.5.666 10815159
  • Yanagi M. Kawasaki R. Wang J. Wong T. Crowston J. Kiuchi Y. (2011). Vascular risk factors in glaucoma: a review. Clin. Exp. Ophthalmol. 39 252–258.
  • Yang J. Yang P. Tezel G. Patil R. V. Hernandez M. R. Wax M. B. (2001). Induction of HLA-DR expression in human lamina cribrosa astrocytes by cytokines and simulated ischemia. Invest. Ophthalmol. Vis. Sci. 42 365–371. 11157868
  • Yang X. Luo C. Cai J. Powell D. Yu D. Kuehn M. et al. (2011). Neurodegenerative and inflammatory pathway components linked to TNF-α/TNFR1 signaling in the glaucomatous human retina. Invest. Ophthalmol. Vis. Sci. 52 8442–8454. 10.1167/iovs.11-8152 21917936
  • Yang X. Xu S. Qian Y. Xiao Q. (2017). Resveratrol regulates microglia M1/M2 polarization via PGC-1α in conditions of neuroinflammatory injury. Brain Behav. Immun. 64 162–172.
  • Yang Z. Quigley H. Pease M. Yang Y. Qian J. Valenta D. et al. (2007). Changes in gene expression in experimental Glaucoma and optic nerve transection: the equilibrium between protective and detrimental mechanisms. Invest. Ophthalmol. Vis. Sci. 48 5539–5548. 10.1167/iovs.07-0542 18055803
  • Ye S. Johnson R. (2001). An age-related decline in interleukin-10 may contribute to the increased expression of interleukin-6 in brain of aged mice. Neuroimmunomodulation 9 183–192. 10.1159/000049025 11847480
  • Yoshida S. Sotozono C. Ikeda T. Kinoshita S. (2001). Interleukin-6 (IL-6) production by cytokine-stimulated human Müller cells. Curr. Eye Res. 22 341–347. 10.1076/ceyr.22.5.341.5498 11600934
  • Youngblood H. Cai J. Drewry M. Helwa I. Hu E. Liu S. et al. (2020). Expression of mRNAs, miRNAs, and lncRNAs in human trabecular meshwork cells upon mechanical stretch. Invest. Ophthalmol. Vis. Sci. 61:2. 10.1167/iovs.61.5.2 32392310
  • Yu L. Wang L. Chen S. (2010). Endogenous toll-like receptor ligands and their biological significance. J. Cell Mol. Med. 14 2592–2603.
  • Yuan C. Aierken A. Xie Z. Li N. Zhao J. Qing H. (2020). The age-related microglial transformation in Alzheimer’s disease pathogenesis. Neurobiol. Aging 92 82–91.
  • Yuan L. Neufeld A. (2000). Tumor necrosis factor-α: a potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head. Glia 32 42–50. 10975909
  • Zamanian J. Xu L. Foo L. Nouri N. Zhou L. Giffard R. et al. (2012). Genomic analysis of reactive astrogliosis. J. Neurosci. 32 6391–6410.
  • Zanon-Moreno V. Marco-Ventura P. Lleo-Perez A. Pons-Vazquez S. Garcia-Medina J. Vinuesa-Silva I. et al. (2008). Oxidative stress in primary open-angle glaucoma. J. Glaucoma 17 263–268.
  • Zhang D. Hu X. Qian L. Wilson B. Lee C. Flood P. et al. (2009). Prostaglandin E2 released from activated microglia enhances astrocyte proliferation in vitro. Toxicol. Appl. Pharmacol. 238 64–70. 10.1016/j.taap.2009.04.015 19397918
  • Zhang S. Wang H. Lu Q. Qing G. Wang N. Wang Y. et al. (2009). Detection of early neuron degeneration and accompanying glial responses in the visual pathway in a rat model of acute intraocular hypertension. Brain Res. 1303 131–143. 10.1016/j.brainres.2009.09.029 19765568
  • Zhao D. Cho J. Kim M. Guallar E. (2014). The association of blood pressure and primary open-angle glaucoma: a meta-analysis. Am. J. Ophthalmol. 158 615–627.e9.
  • Zhao L. Zabel M. Wang X. Ma W. Shah P. Fariss R. et al. (2015). Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Mol. Med. 7 1179–1197. 10.15252/emmm.201505298 26139610
  • Zhao W. Xie W. Xiao Q. Beers D. Appel S. (2006). Protective effects of an anti-inflammatory cytokine, interleukin-4, on motoneuron toxicity induced by activated microglia. J. Neurochem. 99 1176–1187. 10.1111/j.1471-4159.2006.04172.x 17018025
  • Zhu H. Wang L. Ruan Y. Zhou L. Zhang D. Min Z. et al. (2011). An efficient delivery of DAMPs on the cell surface by the unconventional secretion pathway. Biochem. Biophys. Res. Commun. 404 790–795. 10.1016/j.bbrc.2010.12.061 21168385
  • Zhu Y. Pappas A. Wang R. Seifert P. Sun D. Jakobs T. (2018). Ultrastructural morphology of the optic nerve head in aged and Glaucomatous mice. Invest. Ophthalmol. Vis. Sci. 59 3984–3996.
  • Ziebell J. Taylor S. Cao T. Harrison J. Lifshitz J. (2012). Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury. J. Neuroinflammation 9:247. 10.1186/1742-2094-9-247 23111107
  • Zöller T. Attaai A. Potru P. Ruß T. Spittau B. (2018). Aged mouse cortical microglia display an activation profile suggesting immunotolerogenic functions. Int. J. Mol. Sci. 19:706. 10.3390/ijms19030706 29494550
  • Zuzic M. Arias J. Wohl S. Busskamp V. (2019). Retinal miRNA functions in health and disease. Genes 10:377.