Comparative Study of the Performance of Two Different Luciferases for the Analysis of Fumonisin B<sub>1</sub> in Wheat Samples

  1. Luque‐Uría, Álvaro 1
  2. Peltomaa, Riikka 13
  3. Navarro‐Duro, Marina 1
  4. Fikacek, Sabrina 1
  5. Head, Trajen 2
  6. Deo, Sapna 2
  7. Daunert, Sylvia 2
  8. Benito‐Peña, Elena 1
  9. Moreno‐Bondi, María C. 1
  1. 1 Department of Analytical Chemistry Faculty of Chemistry Complutense University of Madrid Ciudad Universitaria s/n, 28040 Madrid Spain
  2. 2 Department of Biochemistry and Molecular Biology Miller School of Medicine University of Miami Clinical and Translational Science Institute University of Miami Miami FL 33136 USA
  3. 3 Department of Life Technologies Turku Collegium for Science Medicine and Technology TCSMT University of Turku Kiinamyllynkatu 10 20520 Turku Finland
Revista:
Analysis &amp; Sensing

ISSN: 2629-2742 2629-2742

Año de publicación: 2022

Volumen: 2

Número: 4

Tipo: Artículo

DOI: 10.1002/ANSE.202100070 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Analysis &amp; Sensing

Resumen

The development of two different immunoassays for the determination of fumonisin B1 in wheat samples is reported. A previously described mimopeptide for fumonisin B1 (FB1) was used to produce fusion proteins in combination with two different luciferases: Gaussia luciferase (GLuc) and NanoLuc luciferase (NLuc). The production, expression and the development of two immunoassays based on these fusion proteins (A2-GLuc and A2-NLuc) is detailed. The assay showing the best performance, A2-NLuc, with a limit of detection of 0.61 ng mL−1 and a dynamic range from 1.9 to 95 ng mL−1, was employed for the analysis of spiked wheat samples, a reference matrix material, as well as naturally contaminated wheat samples. The recoveries obtained in the spiked samples were acceptable, between 81.5 and 109 %, with relative standard deviations lower than 14 %. The analysis of naturally contaminated wheat was validated by a liquid chromatography coupled to tandem mass detection method.

Referencias bibliográficas

  • 10.2144/000113765
  • 10.4236/abb.2014.56065
  • D. Wild Ed. The Immunoassay Handbook: Theory and Applications of Ligand Binding ELISA and Related Techniques Elsevier Oxford; Waltham MA 2013.
  • 10.1007/s00294-019-00951-5
  • 10.1021/acs.analchem.1c02109
  • 10.1016/j.bbapap.2010.04.014
  • 10.1016/j.bbapap.2015.05.008
  • 10.1021/acs.bioconjchem.6b00112
  • Goyal S., (2017), Fungal Metabolites, pp. 1
  • 10.3390/toxins11060328
  • 10.1128/aem.54.7.1806-1811.1988
  • 10.1039/c39880000743
  • 10.1016/j.fct.2018.09.043
  • 10.2478/10004-1254-63-2012-2239
  • 10.7314/APJCP.2012.13.6.2625
  • 10.1128/AEM.60.3.847-852.1994
  • “EUR-Lex – 02006R1881–20210919 – EN – EUR-Lex ” can be found underhttps://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R1881-20210919 n.d.
  • C. for F S A. Nutrition “Guidance for Industry: Fumonisin Levels in Human Foods and Animal Feeds ” can be found underhttps://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-fumonisin-levels-human-foods-and-animal-feeds 2021.
  • 10.1080/19393210.2013.823626
  • 10.3920/WMJ2010.1213
  • 10.1016/j.foodchem.2017.04.142
  • 10.1002/jsfa.5862
  • 10.1093/chromsci/48.8.680
  • 10.3390/molecules23081926
  • 10.1016/j.chroma.2021.462180
  • 10.1007/s00216-017-0750-7
  • 10.1016/j.trac.2020.116156
  • 10.1016/j.foodchem.2020.128084
  • 10.1021/acsomega.9b01206
  • 10.1021/jf4004048
  • 10.1021/acs.analchem.7b01178
  • 10.1016/j.talanta.2015.08.049
  • 10.1128/AEM.65.8.3279-3286.1999
  • 10.1007/s00216-019-02068-7
  • R. F. Masseyeff W. H. W. (Winfried H. W.) Albert N. Staines Methods of Immunological Analysis Weinheim Germany: VCH Verlagsgesellschaft; New York NY (USA): VCH Publishers 1992.
  • 10.1208/aapsj0902029
  • 10.1080/02652030701765723
  • Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs (Text with EEA Relevance)Text with EEA Relevance 2022.
  • 10.1038/srep26814
  • 10.1021/cb3002478