Deepfair: Deep learning for improving fairness in recommender systems

  1. Jesús Bobadilla 1
  2. Raúl Lara-Cabrera 1
  3. Ángel González-Prieto 1
  4. Fernando Ortega 1
  1. 1 Universidad Politécnica de Madrid
    info

    Universidad Politécnica de Madrid

    Madrid, España

    ROR https://ror.org/03n6nwv02

Revista:
IJIMAI

ISSN: 1989-1660

Año de publicación: 2021

Volumen: 6

Número: 6

Páginas: 86-94

Tipo: Artículo

DOI: 10.9781/IJIMAI.2020.11.001 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: IJIMAI

Resumen

The lack of bias management in Recommender Systems leads to minority groups receiving unfair recommendations. Moreover, the trade-off between equity and precision makes it difficult to obtain recommendations that meet both criteria. Here we propose a Deep Learning based Collaborative Filtering algorithm that provides recommendations with an optimum balance between fairness and accuracy. Furthermore, in the recommendation stage, this balance does not require an initial knowledge of the users’ demographic information. The proposed architecture incorporates four abstraction levels: raw ratings and demographic information, minority indexes, accurate predictions, and fair recommendations. Last two levels use the classical Probabilistic Matrix Factorization (PMF) model to obtain users and items hidden factors, and a Multi-Layer Network (MLN) to combine those factors with a ‘fairness’ (ß) parameter. Several experiments have been conducted using two types of minority sets: gender and age. Experimental results show that it is possible to make fair recommendations without losing a significant proportion of accuracy.

Referencias bibliográficas

  • E. C¸ ano, M. Morisio, “Hybrid recommender systems: A systematic literature review,” Intelligent Data Analysis, vol. 21, no. 6, 2017, pp. 1487– 1524.
  • A. Bellogín, P. Castells, I. Cantador, “Statistical biases in Information Retrieval metrics for recommender systems,” Information Retrieval Journal, vol. 20, no. 6, 2017, pp. 606–634.
  • R. Gao, C. Shah, “Toward creating a fairer ranking in search engine results,” Information Processing & Management, vol. 57, no. 1, 2020, pp. 102138.
  • M. Fatehkia, R. Kashyap, I. Weber, “Using Facebook ad data to track the global digital gender gap,” World Development, vol. 107, 2018, pp. 189–209.
  • N. S. Santos, A. Garc´ıa-Holgado, M. C. S´anchez-Go´mez, “Gender gap in the digital society: A qualitative analysis of the international conversation in the wyred project”, in: Proceedings of the Seventh International Conference on Technological Ecosystems for Enhancing Multiculturality, TEEM’19, New York, NY, USA, 2019, pp. 518–524.
  • I. Portugal, P. Alencar, D. Cowan, “The use of machine learning algorithms in recommender systems: A systematic review,” Expert Systems with Applications, vol. 97, 2018, pp. 205–227.
  • M. Mendoza, N. Torres, “Evaluating content novelty in recommender systems,” Journal of Intelligent Information Systems, vol. 54, no. 2, 2020, pp. 297–316.
  • J. Bobadilla, A. Guti´errez, F. Ortega, B. Zhu, “Reliability quality measures for recommender systems,” Information Sciences, vol. 442-443, 2018, pp. 145–157.
  • M. Kunaver, T. Poˇzrl, “Diversity in recommender systems – A survey,” Knowledge-Based Systems, vol. 123, 2017, pp. 154–162.
  • M. de Gemmis, P. Lops, G. Semeraro, C. Musto, “An investigation on the serendipity problem in recommender systems,” Information Processing & Management, vol. 51, no. 5, 2015, pp. 695–717.
  • D. Kotkov, S. Wang, J. Veijalainen, “A survey of serendipity in recommender systems,” Knowledge-Based Systems, vol. 111, 2016, pp. 180–192.
  • K. Holstein, J. Wortman Vaughan, H. Daum´e, M. Dudik, H. Wallach, “Improving fairness in machine learning systems: What do industry practitioners need?,” in: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, New York, NY, USA, 2019.
  • R. Mehrotra, J. McInerney, H. Bouchard, M. Lalmas, F. Diaz, “Towards a fair marketplace: Counterfactual evaluation of the trade-off between relevance, fairness & satisfaction in recommendation systems,” in: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM ’18, Association for Computing Machinery, New York, NY, USA, 2018, pp. 2243–2251.
  • J. L. Herlocker, J. A. Konstan, L. G. Terveen, J. T. Riedl, “Evaluating collaborative filtering recommender systems,” ACM Transactions on Information Systems, vol. 22, no. 1, 2004, pp. 5–53.
  • A. Hernando, J. Bobadilla, F. Ortega, “A non negative matrix factorization for collaborative filtering recommender systems based on a Bayesian probabilistic model,” Knowledge-Based Systems, vol. 97, 2016, pp. 188–202.
  • N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, A. Galstyan, “A survey on bias and fairness in machine learning”, 2019. arXiv:1908.09635.
  • R. Burke, N. Sonboli, A. Ordonez-Gauger, “Balanced neighborhoods for multi-sided fairness in recommendation,” in: Proceedings of the 1st Conference on Fairness, Accountability and Transparency, Vol. 81 of Proceedings of Machine Learning Research, PMLR, New York, NY, USA, 2018, pp. 202–214.
  • J. Leonhardt, A. Anand, M. Khosla, “User fairness in recommender systems,” in: Companion Proceedings of the Web Conference 2018, WWW ’18, Republic and Canton of Geneva, CHE, 2018, pp. 101–102.
  • M. D. Ekstrand, M. Tian, M. R. I. Kazi, H. Mehrpouyan, D. Kluver, Exploring author gender in book rating and recommendation, in: Proceedings of the 12th ACM Conference on Recommender Systems, RecSys ’18, Association for Computing Machinery, New York, NY, USA, 2018, pp. 242–250.
  • V. Tsintzou, E. Pitoura, P. Tsaparas, “Bias disparity in recommendation systems,” arXiv:1811.01461.
  • S. Yao, B. Huang, Beyond parity: Fairness objectives for collaborative filtering, CoRR abs/1705.08804.
  • M. Mansoury, B. Mobasher, R. Burke, M. Pechenizkiy, “Bias Disparity in Collaborative Recommendation: Algorithmic Evaluation and Comparison,” ArXiv e-prints.
  • A. Chouldechova, A. Roth, “The frontiers of fairness in machine learning,” CoRR abs/1810.08810.
  • R. Mu, “A Survey of Recommender Systems Based on Deep Learning,” IEEE Access, vol. 6, 2018, pp. 69009–69022.
  • Z. Batmaz, A. Yurekli, A. Bilge, C. Kaleli, “A review on deep learning for recommender systems: challenges and remedies,” Artificial Intelligence Review, vol. 52, no. 1, 2019, pp. 1–37.
  • J. Bobadilla, F. Ortega, A. Guti´errez, S. Alonso, “Classification-based deep neural network architecture for collaborative filtering recommender systems,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 6, no. 1, 2020, pp. 68–77.
  • J. Bobadilla, S. Alonso, A. Hernando, “Deep Learning Architecture for Collaborative Filtering Recommender Systems,” Applied Sciences, vol. 10, no. 7, 2020.
  • J. Choo, S. Liu, “Visual Analytics for Explainable Deep Learning,” IEEE Computer Graphics and Applications, vol. 38, no. 4, 2018, pp. 84–92.
  • H. Wu, Z. Zhang, K. Yue, B. Zhang, J. He, L. Sun, “Dual-regularized matrix factorization with deep neural networks for recommender systems,” Knowledge-Based Systems, vol. 145, 2018, pp. 46–58.
  • X. He, L. Liao, H. Zhang, L. Nie, X. Hu, T.-S. Chua, “Neural collaborative filtering,” in: Proceedings of the 26th International Conference on World Wide Web, WWW ’17, Republic and Canton of Geneva, CHE, 2017, pp. 173–182.
  • F. M. Harper, J. A. Konstan, “The movielens datasets: History and context,” ACM Transactions on Interactive and Intelligent Systems, vol. 5, no. 4, 2015, pp. 1–19