Unravelling the oxygen isotope signal (δ18O) of rodent teeth from northeastern Iberia, and implications for past climate reconstructions

  1. Fernández-García, Mónica
  2. Royer, Aurélien 1
  3. López-García, Juan Manuel
  4. Bennàsar Serra, Maria
  5. Goedert, Jean
  6. Fourel, François
  7. Julien, Marie-Anne
  8. Bañuls-Cardona, Sandra 23
  9. Rodríguez Hidalgo, Antonio 4
  10. Vallverdú Poch, Josep 23
  11. Lécuyer, Christophe
  1. 1 Université de Bourgogne (UB)
  2. 2 Universitat Rovira i Virgili
    info

    Universitat Rovira i Virgili

    Tarragona, España

    ROR https://ror.org/00g5sqv46

  3. 3 Institut Català de Paleoecologia Humana i Evolució Social
    info

    Institut Català de Paleoecologia Humana i Evolució Social

    Tarragona, España

  4. 4 Universidad de Sevilla
    info

    Universidad de Sevilla

    Sevilla, España

    ROR https://ror.org/03yxnpp24

Revista:
Quaternary Science Reviews

ISSN: 0277-3791 1873-457X

Año de publicación: 2019

Volumen: 218

Páginas: 107-121

Tipo: Artículo

DOI: 10.1016/J.QUASCIREV.2019.04.035 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Quaternary Science Reviews

Objetivos de desarrollo sostenible

Resumen

Small mammals, especially rodents, constitute valuable proxies for continental Quaternary environments at a regional and local scale. Recent studies have demonstrated the relation between the stable oxygen isotope composition of the biogenic phosphate from rodent teeth (δ18Op), and the oxygen isotope composition of meteoric waters (δ18Omw), which is related to air temperatures at mid and high latitudes. This work explores the δ18Op of rodent tooth enamel (from Murinae and Arvicolinae subfamilies) to investigate the palaeoenvironmental conditions in northeastern Iberia during Marine Isotope Stage 3 (MIS 3; ca. 60-30 ka). Fourteen new δ18Op analyses from modern samples in conjunction with forty-six δ18Op analyses previously published are used to decipher the isotope record of present-day rodent teeth in this region. Two main factors should be considered in Iberian palaeoenvironmental reconstructions: the singular nature of Iberian δ18Omw records and the potential seasonality bias of small-mammal accumulation. Methodological proposals are made with a view to ensuring the correct interpretation of the δ18Op of small mammals in reconstructing past air temperatures. This methodology is applied to the MIS 3 sequence of the Cova dels Xaragalls site (Vimbodí-Poblet, Tarragona, Spain), where fifty-one δ18O analyses were performed on wood mouse (Apodemus sylvaticus) lower incisors. A spring-early summer accumulation of small mammals is suggested for the layers at Cova dels Xaragalls. In agreement with previous environmental studies of the site, variations in the δ18Op values suggest slight fluctuations in the climatic conditions throughout the sequence, which are consistent with the stadial-interstadial alternations that characterized MIS 3. Complementary palaeoenvironmental methods determine cooler conditions than nowadays, but within a globally stable climatic period.

Información de financiación

Financiadores

Referencias bibliográficas

  • Andrews, (1990)
  • Arrizabalaga, (2004), Zephyrus, 57, pp. 27
  • Barham, (2017), Quat. Sci. Rev., 176, pp. 71, 10.1016/j.quascirev.2017.10.004
  • Bernard, (2009), Earth Planet. Sci. Lett., 283, pp. 133, 10.1016/j.epsl.2009.04.005
  • Blain, (2009), J. Hum. Evol., 56, pp. 55, 10.1016/j.jhevol.2008.08.020
  • Blain, (2016), Quat. Sci. Rev., 144, pp. 132, 10.1016/j.quascirev.2016.05.020
  • Blake, (1997), Geochim. Cosmochim. Acta, 61, pp. 4411, 10.1016/S0016-7037(97)00272-X
  • Blumenthal, (2014), Geochim. Cosmochim. Acta, 124, pp. 223, 10.1016/j.gca.2013.09.032
  • Bowen, (2017)
  • Clementz, (2012), J. Mammal., 93, pp. 368, 10.1644/11-MAMM-S-179.1
  • Climate-Data.org, 2018. https://es.climate-data.org/.
  • Coady, (1967), J. Dent. Res., 46, pp. 384, 10.1177/00220345670460021201
  • Crowson, (1991), Anal. Chem., 63, pp. 2397, 10.1021/ac00020a038
  • D'Angela, (1990), Chem. Geol., 86, pp. 75
  • Dansgaard, (1964), Tellus, XVI, pp. 436, 10.1111/j.2153-3490.1964.tb00181.x
  • Daux, (2005), Clim. Change, 70, pp. 445, 10.1007/s10584-005-5385-6
  • Delibes, (1983), Ardeola, 30, pp. 57
  • Fernández-García, (2016), Comptes Rendus Palevol, 15, pp. 707, 10.1016/j.crpv.2015.08.005
  • Fletcher, (2010), Quat. Sci. Rev., 29, pp. 2839, 10.1016/j.quascirev.2009.11.015
  • Fons, (1993), Z. Säugertierkd., 58, pp. 38
  • Font-Tullot, (2000)
  • Fourel, (2011), Rapid Commun. Mass Spectrom., 25, pp. 2691, 10.1002/rcm.5056
  • Freudenthal, (2014), Palaeogeogr. Palaeoclimatol. Palaeoecol., 395, pp. 122, 10.1016/j.palaeo.2013.12.023
  • Fricke, (1999), Earth Planet. Sci. Lett., 170, pp. 181, 10.1016/S0012-821X(99)00105-3
  • García-Alix, (2015), Glob. Planet. Change, 131, pp. 1, 10.1016/j.gloplacha.2015.04.005
  • Gat, (1980), Hydrol. Sci. des Sci. Hydrol., 25, pp. 257
  • Gat, (1970), J. Geophys. Res., 75, pp. 3039, 10.1029/JC075i015p03039
  • Gat, (2003), Chem. Phys. Meteorol., 55, pp. 953, 10.1034/j.1600-0889.2003.00081.x
  • Gehler, (2012), PLoS One, 7, pp. 16, 10.1371/journal.pone.0049531
  • Gehler, (2011), Palaeogeogr. Palaeoclimatol. Palaeoecol., 310, pp. 84, 10.1016/j.palaeo.2011.04.014
  • Grimes, (2008), Palaeogeogr. Palaeoclimatol. Palaeoecol., 266, pp. 39, 10.1016/j.palaeo.2008.03.014
  • Grimes, (2003), Geochim. Cosmochim. Acta, 67, pp. 4033, 10.1016/S0016-7037(03)00173-X
  • Hammer, (2001), Palaeontol. Electron., 4, pp. 9
  • Harrison, (2010), Quat. Sci. Rev., 29, pp. 2957, 10.1016/j.quascirev.2010.07.016
  • Hartman, (2015), J. Hum. Evol., 84, pp. 71, 10.1016/j.jhevol.2015.03.008
  • Héran, (2010), Palaeogeogr. Palaeoclimatol. Palaeoecol., 285, pp. 331, 10.1016/j.palaeo.2009.11.030
  • Hernández Fernández, (2001), Glob. Ecol. Biogeogr., 10, pp. 189, 10.1046/j.1466-822x.2001.00218.x
  • Hernández Fernández, (2007), Palaeogeogr. Palaeoclimatol. Palaeoecol., 251, pp. 500, 10.1016/j.palaeo.2007.04.015
  • Hewitt, (2000), Nature, 405, pp. 907, 10.1038/35016000
  • Hillson, (2005)
  • Hut, (1987)
  • IAEA/WMO, (2018)
  • IUCN, (2018)
  • Jeffrey, (2015), Earth Planet. Sci. Lett., 428, pp. 84, 10.1016/j.epsl.2015.07.012
  • Klevezal, (2010), Biol. Butll., 37, pp. 836, 10.1134/S1062359010080078
  • Klevezal, (1990), Acta Theriol. (Warsz)., 35, pp. 331, 10.4098/AT.arch.90-38
  • Kolodny, (1983), Earth Planet. Sci. Lett., 64, pp. 398, 10.1016/0012-821X(83)90100-0
  • Le Louarn, (2003)
  • Lécuyer, (2014)
  • Lécuyer, (2004), pp. 482
  • Lécuyer, (2018), pp. 1
  • Lécuyer, (2007), J. Mass Spectrom., 42, pp. 36, 10.1002/jms.1130
  • Lécuyer, (1993), Palaeogeogr. Palaeoclimatol. Palaeoecol., 105, pp. 235, 10.1016/0031-0182(93)90085-W
  • Lécuyer, (1999), Geochim. Cosmochim. Acta, 63, pp. 855, 10.1016/S0016-7037(99)00096-4
  • Lee-Thorp, (1991), J. Archaeol. Sci., 18, pp. 343, 10.1016/0305-4403(91)90070-6
  • Leichliter, (2017), Palaeogeogr. Palaeoclimatol. Palaeoecol., 485, pp. 57, 10.1016/j.palaeo.2017.06.003
  • Lindars, (2001), Geochim. Cosmochim. Acta, 65, pp. 2535, 10.1016/S0016-7037(01)00606-8
  • Longinelli, (1984), Geochim. Cosmochim. Acta, 48, pp. 385, 10.1016/0016-7037(84)90259-X
  • Longinelli, (1973), Earth Planet. Sci. Lett., 20, pp. 337, 10.1016/0012-821X(73)90007-1
  • López-García, (2011), Editorial Académica Española, Saarbrücken
  • López-García, (2012), Boreas, 41, pp. 235, 10.1111/j.1502-3885.2011.00234.x
  • López-García, (2014), Quat. Int., 326–327, pp. 319, 10.1016/j.quaint.2013.09.010
  • Luz, (1985), Earth Planet. Sci. Lett., 75, pp. 29, 10.1016/0012-821X(85)90047-0
  • Luz, (1984), Geochim. Cosmochim. Acta, 48, pp. 1689, 10.1016/0016-7037(84)90338-7
  • Luzi, (2018), pp. 316
  • Manzanares, (2012)
  • (2018)
  • Mikkola, (1983)
  • Moreno, (1988), Acta Theriol. (Warsz)., 33, pp. 79, 10.4098/AT.arch.88-7
  • Navarro, (2004), Quat. Res., 62, pp. 172, 10.1016/j.yqres.2004.06.001
  • Norrdahl, (2002), Ecography (Cop.), 25, pp. 428, 10.1034/j.1600-0587.2002.250405.x
  • Palomo, (2007)
  • Passey, (2002), Geochim. Cosmochim. Acta, 66, pp. 3225, 10.1016/S0016-7037(02)00933-X
  • Peneycad, (2019), Palaeogeogr. Palaeoclimatol. Palaeoecol., 514, pp. 695, 10.1016/j.palaeo.2018.11.017
  • Podlesak, (2008), Geochim. Cosmochim. Acta, 72, pp. 19, 10.1016/j.gca.2007.10.003
  • Pryor, (2014), Palaeogeogr. Palaeoclimatol. Palaeoecol., 412, pp. 99, 10.1016/j.palaeo.2014.07.003
  • (2017)
  • Rosário, (2004), Mammalia, 68, pp. 133, 10.1515/mamm.2004.014
  • Royer, (2013), Earth Planet. Sci. Lett., 361, pp. 258, 10.1016/j.epsl.2012.09.058
  • Royer, (2013), Quat. Res., 80, pp. 113, 10.1016/j.yqres.2013.03.007
  • Royer, (2014), Quat. Res., 82, pp. 420, 10.1016/j.yqres.2014.06.006
  • Rozanski, (1993), pp. 1
  • Salamolard, (2000), Ecology, 81, pp. 2428, 10.1890/0012-9658(2000)081[2428:ROAAPT]2.0.CO;2
  • Sans-Coma, (1976), Misc. Zool., III, pp. 227
  • Sánchez-González, (2016)
  • Schrag, (2002), Quat. Sci. Rev., 21, pp. 331, 10.1016/S0277-3791(01)00110-X
  • Sekour, (2011), Rev. d'Écol. (La Terre la Vie), 66, pp. 79, 10.3406/revec.2011.1559
  • Skrzypek, (2016), Palaeogeogr. Palaeoclimatol. Palaeoecol., 446, pp. 162, 10.1016/j.palaeo.2016.01.032
  • Sommer, (2006), Mamm Rev., 36, pp. 251, 10.1111/j.1365-2907.2006.00093.x
  • Sundell, (2004), J. Anim. Ecol., 73, pp. 167, 10.1111/j.1365-2656.2004.00795.x
  • Sunyer, (2016), Mamm. Biol., 81, pp. 372, 10.1016/j.mambio.2016.03.001
  • Uriarte, (2003)
  • Vallverdú, (2012), pp. 241
  • von Grafenstein, (1996), Geochim. Cosmochim. Acta, 60, pp. 4025, 10.1016/S0016-7037(96)00230-X
  • Yalden, (2009), Bird Study, 32, pp. 122, 10.1080/00063658509476867
  • Zazzo, (2004), Geochim. Cosmochim. Acta, 68, pp. 1, 10.1016/S0016-7037(03)00278-3