Magneto-controlled electrochemical immunosensing platform to assess the senescence-associated GDF-15 marker in colorectal cancer
- Tejerina-Miranda, Sandra 2
- Pérez-Ginés, Víctor 2
- Torrente-Rodríguez, Rebeca M. 2
- Pedrero, María 2
- Montero-Calle, Ana 1
- Pingarrón, José M. 2
- Barderas, Rodrigo 1
- Campuzano, Susana 2
- 1 Chronic Disease Programme, UFIEC, Institute of Health Carlos III, Majadahonda, 28220-Madrid, Spain
- 2 Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040-Madrid, Spain
ISSN: 2635-0998
Año de publicación: 2024
Volumen: 3
Número: 2
Páginas: 238-247
Tipo: Artículo
Otras publicaciones en: Sensors & Diagnostics
Resumen
In this study, we report a novel electrochemical immunoplatform using magnetic micro-supports and screen-printed carbon electrodes (SPCEs), overcoming limitations of the methods reported to date, for the rapid and sensitive determination of GDF-15, a molecular marker associated with cellular senescence in aging and cancer development and prognosis. The immunoplatform incorporated a sandwich-type configuration with specific capture and biotinylated-detection antibodies and used a streptavidin–peroxidase (strep–HRP) enzymatic conjugate as label. After magnetic capturing the micro-supports with the sandwich HRP-labeled immunocomplexes onto the surface of a SPCE, the change in cathodic current was quantified in the presence of H2O2 and hydroquinone (HQ), showing a direct correlation with the GDF-15 concentration. The proposed bioplatform exhibited attractive performance characteristics, including a good reproducibility (RSD 4.3%), and a wide linear concentration dynamic range from 140 to 10 000 pg mL−1 with a low limit of detection (LOD) of 42 pg mL−1 for GDF-15 standards in buffered solutions. The selectivity of the developed method and the storage stability of the capturing immunoconjugates were noteworthy. Indeed, the immunoconjugates showed a reliable performance for over 28 days when stored in a refrigerator. The immunoplatform was applied to a cohort of 19 plasma samples representing the different stages of colorectal cancer (CRC). The method allowed efficient discrimination between healthy individuals and CRC patients, particularly those in advanced stages, within a rapid 75-minute timeframe. The immunoplatform also presents substantial advantages in terms of cost-effectiveness, assay time reduction, and simplicity compared to other available techniques.
Información de financiación
Financiadores
-
Ministerio de Ciencia e Innovación
- PID2019-103899RB-I00
-
Horizon 2020
- FEI-EU-22-08
-
Federación Española de Enfermedades Raras
- PI20CIII/00019
- PI23CIII/00027
Referencias bibliográficas
- d'Adda di Fagagna, (2008), Nat. Rev. Cancer, 8, pp. 512, 10.1038/nrc2440
- Shmulevich, (2021), Antioxid. Redox Signaling, 34, pp. 324, 10.1089/ars.2020.8043
- Paramos-De-Carvalho, (2021), eLife, 10, pp. e72449, 10.7554/eLife.72449
- Ohtani, (2022), Inflammation Regener., 42, pp. 11, 10.1186/s41232-022-00197-8
- Kumari, (2021), Front. Cell Dev. Biol., 9, pp. 645593, 10.3389/fcell.2021.645593
- Takasugi, (2022), FEBS J., 290, pp. 1348, 10.1111/febs.16381
- Domen, (2022), J. Exp. Clin. Cancer Res., 41, pp. 360, 10.1186/s13046-022-02555-3
- Yang, (2021), Front. Cell Dev. Biol., 9, pp. 722205, 10.3389/fcell.2021.722205
- Siegel, (2023), Ca-Cancer J. Clin., 73, pp. 233, 10.3322/caac.21772
- Hua, (2021), Br. J. Cancer, 125, pp. 806, 10.1038/s41416-021-01458-y
- Lawton, (1997), Gene, 203, pp. 17, 10.1016/S0378-1119(97)00485-X
- Assadi, (2020), Pflugers Arch., 472, pp. 1535, 10.1007/s00424-020-02459-1
- Iglesias, (2023), Endocrine, 81, pp. 419, 10.1007/s12020-023-03377-9
- Li, (2016), J. Cell. Mol. Med., 20, pp. 1420, 10.1111/jcmm.12830
- Vocka, (2016), J. Clin. Oncol., 34, pp. e15098, 10.1200/JCO.2016.34.15_suppl.e15098
- Baek, (2019), Pharmacol. Ther., 198, pp. 46, 10.1016/j.pharmthera.2019.02.008
- Li, (2015), Oncotarget, 7, pp. 860, 10.18632/oncotarget.6205
- Baba, (2022), Front. Pharmacol., 13, pp. 791272, 10.3389/fphar.2022.791272
- Xu, (2009), Cell Res., 19, pp. 156, 10.1038/cr.2009.5
- Zhang, (2018), Biotechnology, 46, pp. 652
- Wang, (2019), BMC Cancer, 19, pp. 177, 10.1186/s12885-019-5385-y
- Robotycka, (2022), Med. Res. J., 7, pp. 208, 10.5603/MRJ.a2022.0037
- Souček, (2018), J. Assist. Reprod. Genet., 35, pp. 1407, 10.1007/s10815-018-1230-5
- Emmerson, (2018), Front. Physiol., 9, pp. 1712, 10.3389/fphys.2018.01712
- Trovik, (2014), Int. J. Gynecol. Cancer, 24, pp. 252, 10.1097/IGC.0000000000000037
- Zhang, (2017), Toxicol. Appl. Pharmacol., 332, pp. 8, 10.1016/j.taap.2017.07.016
- Liu, (2023), Obes. Res. Clin. Pract., 17, pp. 91, 10.1016/j.orcp.2022.12.001
- Ebai, (2017), Clin. Chem., 63, pp. 1497, 10.1373/clinchem.2017.271833
- Chen, (2022), Anal. Chim. Acta, 1223, pp. 340194, 10.1016/j.aca.2022.340194
- Jiao, (2022), Anal. Methods, 14, pp. 1420, 10.1039/D1AY02198B
- Chen, (2023), Microchim. Acta, 190, pp. 92, 10.1007/s00604-023-05674-6
- Chen, (2023), Microchem. J., 193, pp. 109150, 10.1016/j.microc.2023.109150
- Abdel-Aziz, (2020), Anal. Chem., 92, pp. 7947, 10.1021/acs.analchem.0c01337
- Sramkova, (2021), Electrochim. Acta, 379, pp. 138177, 10.1016/j.electacta.2021.138177
- Devi, (2021), J. Neural Eng., 18, pp. 041007, 10.1088/1741-2552/ac1e45
- Lai, (2014), Anal. Chem., 86, pp. 5061, 10.1021/ac500738a
- Lin, (2016), Anal. Chem., 88, pp. 1030, 10.1021/acs.analchem.5b04005
- Otieno, (2016), Methods Enzymol., 571, pp. 135, 10.1016/bs.mie.2015.10.005
- Fortunati, (2023), Biosens. Bioelectron.: X, 15, pp. 100404
- Fortunati, (2023), Analysis Sensing, pp. e202300062, 10.1002/anse.202300062
- Eguílaz, (2010), Biosens. Bioelectron., 26, pp. 517, 10.1016/j.bios.2010.07.060
- Conzuelo, (2012), Biosens. Bioelectron., 36, pp. 81, 10.1016/j.bios.2012.03.044
- Kim, (2019), mAbs, 11, pp. 1319, 10.1080/19420862.2019.1647744
- Hasebe, (1975), Anal. Chem., 47, pp. 2412, 10.1021/ac60364a002
- Keith, (1983), Anal. Chem., 55, pp. 2210, 10.1021/ac00264a003
- P.Borman and D.Elder , Q2(R1) validation of analytical procedures: text and methodology, ICH quality guidelines: an implementation guide , ed. A. Teasdale , D. Elder and R. W. Nims , Wiley , Hoboken , 2017 , pp. 127–166
- Wang, (2017), Oncotarget, 8, pp. 24892, 10.18632/oncotarget.15279
- Arévalo, (2023), Biosens. Bioelectron.: X, 13, pp. 100325
- Melanson, (2007), Circulation, 116, pp. e501, 10.1161/CIRCULATIONAHA.107.722975
- Grigorieva, (2013), Bull. Exp. Biol. Med., 155, pp. 118, 10.1007/s10517-013-2095-3
- Arévalo, (2022), Bioelectrochemistry, 146, pp. 108157, 10.1016/j.bioelechem.2022.108157
- Vanamee, (2023), Front. Immunol., 14, pp. 1225704, 10.3389/fimmu.2023.1225704
- Andrade, (2014), Anal. Chim. Acta, 838, pp. 1, 10.1016/j.aca.2014.04.057
- Wallin, (2011), Br. J. Cancer, 104, pp. 1619, 10.1038/bjc.2011.112
- Jakubowska, (2016), Prog. Health Sci., 6, pp. 40, 10.5604/01.3001.0009.5108
- Brown, (2003), Clin. Cancer Res., 9, pp. 2642
- Barderas, (2013), Mol. Cell. Proteomics, 12, pp. 1602, 10.1074/mcp.M112.022848
- Vocka, (2018), Cancer Biomarkers, 21, pp. 869, 10.3233/CBM-170792
- Kamel, (2021), Egypt. J. Hosp. Med., 85, pp. 3639, 10.21608/ejhm.2021.201980
- Lungulescu, (2022), J. Med. Rad. Onc., II, pp. 1
- Xue, (2010), J. Proteome Res., 9, pp. 545, 10.1021/pr9008817
- Zheng, (2021), Exp. Cell Res., 398, pp. 112394, 10.1016/j.yexcr.2020.112394