A chemically functionalized glass support for gold and silver metallic nanoparticle analysis with LIBS

  1. Cárdenas-Escudero, J. 23
  2. Gardette, V. 1
  3. Villalonga, A. 4
  4. Sánchez, A. 4
  5. Villalonga, R. 4
  6. Motto-Ros, V. 1
  7. Galán-Madruga, D. 5
  8. Cáceres, J. O. 2
  1. 1 Institut Lumière Matière UMR 5306, Université Lyon 1 – CNRS, Université de Lyon, Villeurbanne, France
  2. 2 Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
  3. 3 Analytical Chemistry Department, FCNET, Universidad de Panamá, Manuel E. Batista and José De Fábrega av., Ciudad Universitaria, Estafeta Universitaria, Bella Vista, 3366, Panamá 4, Panama
  4. 4 Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
  5. 5 National Centre for Environmental Health, Carlos III Health Institute, Ctra. Majadahonda-Pozuelo km 2.2, Majadahonda, 28220, Madrid, Spain
Revista:
Journal of Analytical Atomic Spectrometry

ISSN: 0267-9477 1364-5544

Año de publicación: 2024

Tipo: Artículo

DOI: 10.1039/D3JA00425B GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of Analytical Atomic Spectrometry

Resumen

This work has focused on the development of a new analytical alternative based on the laser-induced breakdown spectroscopy (LIBS) technique for the fast, reliable, and economical determination of the gold and silver nanoparticle content in a low linear concentration range between 2.9 and 0.058 μg mL−1 and 2.9–0.116 μg mL−1, respectively, without requiring complicated sample pretreatment procedures or advanced separation techniques. Metallic nanoparticles are currently essential materials for the development of new technologies in different scientific and technical areas. However, numerous studies have pointed out these nanomaterials' toxic and polluting potential and the various health implications for humans, animals, and the ecosystem. The current reality reflects the lack of analytical techniques with low economic, environmental, and health impacts and the capacity to quantify the total metallic nanoparticle content. For this purpose, a novel and simple method for the selective capture of gold and silver nanoparticles, consisting of a chemically functionalized glass surface, has been custom-developed for subsequent analysis with LIBS. The results show that the proposed method, employing a functionalized sample glass support, presents a suitable analytical performance characterized by increased sensitivity, specifically 4.7% and 329.2% for Au-NPs and Ag-NPs, and proportionally decreased error in the slope and intercept of the calibration curves, 68% for Au-NPs and 87% for Ag-NPs, respectively.

Referencias bibliográficas

  • S.Kumar , B.Kumar , R.Sehgal , M. F.Wani , D.Kumar , M. D.Sharma , V.Singh , R.Sehgal and V.Kumar , in Nanoparticles Reinforced Metal Nanocomposites: Mechanical Performance and Durability , ed. S. K. Tiwari , V. Kumar and S. Thomas , Springer Nature Singapore , Singapore , 2023 , pp. 209–235 , 10.1007/978-981-19-9729-7_7
  • Thompson, (2007), Nano Today, 2, pp. 40, 10.1016/S1748-0132(07)70116-0
  • Sápi, (2021), Catal. Lett., 151, pp. 2153, 10.1007/s10562-020-03477-5
  • Tan, (2019), Bioengineering, 6, pp. 17, 10.3390/bioengineering6010017
  • Rai, (2016), Crit. Rev. Microbiol., 42, pp. 696
  • Li, (2022), J. Nanopart. Res., 24, pp. 84, 10.1007/s11051-022-05469-5
  • Tinajero-Díaz, (2021), Pharmaceutics, 13, pp. 1719, 10.3390/pharmaceutics13101719
  • C.Moşoarcă , R.Bănică and P.Linul , in New Frontiers in Nanochemistry , Apple Academic Press , 2020 , pp. 327–337
  • Patil, (2023), J. Cluster Sci., 34, pp. 705, 10.1007/s10876-022-02287-6
  • Jamkhande, (2019), J. Drug Delivery Sci. Technol., 53, pp. 101174, 10.1016/j.jddst.2019.101174
  • Cavaliere, (2015), Nanomed. Nanotechnol. Biol. Med., 11, pp. 1417, 10.1016/j.nano.2015.02.023
  • Rani, (2023), Chemosphere, 317, pp. 137841, 10.1016/j.chemosphere.2023.137841
  • Azeem, (2022), Environ. Sci. Pollut. Res., 29, pp. 59930, 10.1007/s11356-022-20039-x
  • Das, (2019), Mater. Chem. Phys., 228, pp. 310, 10.1016/j.matchemphys.2019.02.064
  • Ali, (2023), Adv. Colloid Interface Sci., 314, pp. 102881, 10.1016/j.cis.2023.102881
  • Dos Santos, (2014), J. Pharm. Sci., 103, pp. 1931, 10.1002/jps.24001
  • Fratoddi, (2015), Nano Res., 8, pp. 1771, 10.1007/s12274-014-0697-3
  • Hu, (2023), J. Appl. Toxicol., 43, pp. 32, 10.1002/jat.4320
  • Suthar, (2023), J. Appl. Toxicol., 43, pp. 4, 10.1002/jat.4317
  • Noga, (2023), Int. J. Mol. Sci., 24, pp. 5133, 10.3390/ijms24065133
  • Tortella, (2020), J. Hazard. Mater., 390, pp. 121974, 10.1016/j.jhazmat.2019.121974
  • Jaswal, (2021), Mater. Today: Proc., 81, pp. 859
  • Levard, (2012), Environ. Sci. Technol., 46, pp. 6900, 10.1021/es2037405
  • Majedi, (2016), TrAC, Trends Anal. Chem., 75, pp. 183, 10.1016/j.trac.2015.08.009
  • Hagarová, (2017), Anal. Methods, 9, pp. 3594, 10.1039/C7AY00953D
  • Bai, (2023), Appl. Spectrosc. Rev., 58, pp. 110, 10.1080/05704928.2021.1935272
  • Keerthi, (2022), Opt Laser. Technol., 147, pp. 107622, 10.1016/j.optlastec.2021.107622
  • Noll, (2018), J. Anal. At. Spectrom., 33, pp. 945, 10.1039/C8JA00076J
  • S.Legnaioli , G.Lorenzetti , L.Pardini , G. H.Cavalcanti and V.Palleschi , in Laser-Induced Breakdown Spectroscopy: Theory and Applications , ed. S. Musazzi and U. Perini , Springer Berlin Heidelberg , Berlin, Heidelberg , 2014 , pp. 169–193 , 10.1007/978-3-642-45085-3_7
  • Zhang, (2023), Spectrochim. Acta, Part B, 201, pp. 106626, 10.1016/j.sab.2023.106626
  • Khan, (2022), J. Spectrosc., 2022, pp. 3887038, 10.1155/2022/3887038
  • De Giacomo, (2014), Spectrochim. Acta, Part B, 98, pp. 19, 10.1016/j.sab.2014.05.010
  • De Giacomo, (2013), Anal. Chem., 85, pp. 10180, 10.1021/ac4016165
  • Mayol, (2021), Nanoscale, 13, pp. 18616, 10.1039/D0NR08282A
  • Mendis, (2016), RSC Adv., 6, pp. 48792, 10.1039/C6RA08336F
  • Liu, (2007), Colloids Surf., B, 58, pp. 3, 10.1016/j.colsurfb.2006.08.005
  • Paramelle, (2014), Analyst, 139, pp. 4855, 10.1039/C4AN00978A
  • Marques, (2013), Appl. Surf. Sci., 275, pp. 347, 10.1016/j.apsusc.2012.12.099
  • A.Kramida , K.Olsen and Y.Ralchenko , National Institute of Standards and Technology web , https://physics.nist.gov/PhysRefData/ASD/LIBS/libs-form.html , 2023
  • He, (2005), Spectrochim. Acta, Part A, 61, pp. 2861, 10.1016/j.saa.2004.10.035
  • Hlaing, (2016), Opt. Mater., 58, pp. 439, 10.1016/j.optmat.2016.06.013
  • Turkevich, (1951), Discuss. Faraday Soc., 11, pp. 55, 10.1039/df9511100055
  • Frens, (1973), Nat. Phys. Sci., 241, pp. 20, 10.1038/physci241020a0
  • Kimling, (2006), J. Phys. Chem. B, 110, pp. 15700, 10.1021/jp061667w
  • Zhao, (2013), Coord. Chem. Rev., 257, pp. 638, 10.1016/j.ccr.2012.09.002
  • Dong, (2020), Kona, 37, pp. 224, 10.14356/kona.2020011
  • Ratyakshi, (2009), Asian J. Chem., 21, pp. 113
  • Beck, (2023), Microchim. Acta, 190, pp. 91, 10.1007/s00604-023-05666-6
  • Xiao, (2021), Analyst, 146, pp. 597, 10.1039/D0AN01870H
  • Zhan, (2023), Electrochim. Acta, 437, pp. 141468, 10.1016/j.electacta.2022.141468
  • Kim, (2022), Anal. Chim. Acta, 1213, pp. 339960, 10.1016/j.aca.2022.339960
  • Thomas, (2022), Phys. Chem. Chem. Phys., 24, pp. 25025, 10.1039/D2CP01004F
  • Shen, (2019), Sci. Rep., 9, pp. 9172, 10.1038/s41598-019-45622-0
  • Wang, (2021), Chem. Soc. Rev., 50, pp. 6507, 10.1039/D0CS01220C
  • Wieszczycka, (2021), Coord. Chem. Rev., 436, pp. 213846, 10.1016/j.ccr.2021.213846
  • Linares, (2011), Chem. Commun., 47, pp. 9024, 10.1039/c1cc11016k
  • Pena-Pereira, (2012), TrAC, Trends Anal. Chem., 40, pp. 90, 10.1016/j.trac.2012.07.015
  • Kokkin, (2015), J. Phys. Chem. A, 119, pp. 11659, 10.1021/acs.jpca.5b08781
  • Häkkinen, (2012), Nat. Chem., 4, pp. 443, 10.1038/nchem.1352
  • Kitching, (2014), Phys. Chem. Chem. Phys., 16, pp. 6050, 10.1039/C3CP55366C
  • Toh, (2014), Sci. China: Chem., 57, pp. 1199, 10.1007/s11426-014-5141-8
  • Csapó, (2012), Colloids Surf., B, 98, pp. 43, 10.1016/j.colsurfb.2012.03.036
  • Chen, (2014), RSC Adv., 4, pp. 46527, 10.1039/C4RA05583G
  • Lee, (2020), Langmuir, 36, pp. 5935, 10.1021/acs.langmuir.0c00745
  • José-Yacamán, (2005), J. Phys. Chem. B, 109, pp. 9703, 10.1021/jp0509459
  • Carranza, (2002), Anal. Chem., 74, pp. 5450, 10.1021/ac020261m
  • Pallavicini, (2010), J. Colloid Interface Sci., 350, pp. 110, 10.1016/j.jcis.2010.06.019
  • Messaoud Aberkane, (2018), Thin Solid Films, 653, pp. 293, 10.1016/j.tsf.2018.03.052
  • Abdelhamid, (2010), Spectrochim. Acta, Part B, 65, pp. 695, 10.1016/j.sab.2010.03.017
  • Liu, (2019), Spectrochim. Acta, Part B, 160, pp. 105684, 10.1016/j.sab.2019.105684
  • Axente, (2014), J. Anal. At. Spectrom., 29, pp. 553, 10.1039/c3ja50355k
  • Jurado-López, (2002), J. Anal. At. Spectrom., 17, pp. 544, 10.1039/B111107H
  • Xiu, (2019), Appl. Opt., 58, pp. 1040, 10.1364/AO.58.001040
  • Xiu, (2018), Appl. Opt., 57, pp. 404, 10.1364/AO.57.000404