Isolated Compounds from Buddleja Coriacea with Antibacterial and Anti-Inflammatory Activities in the Urinary Tract

  1. Luis Apaza Ticona 13
  2. Francisco Aguilar Rico 1
  3. Javier Sánchez Sánchez-Corral 1
  4. Montserrat Ortega Domenech 2
  5. Ángel Rumbero Sánchez 1
  1. 1 Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, Madrid, Spain
  2. 2 Dr. Goya Análisis, SL, Alcalá de Henares, Madrid, Spain
  3. 3 Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Madrid, Spain
Revista:
Planta Medica International Open

ISSN: 2509-9264 2509-6656

Año de publicación: 2022

Volumen: 9

Número: 01

Páginas: e12-e22

Tipo: Artículo

DOI: 10.1055/A-1696-6851 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Planta Medica International Open

Resumen

Buddleja coriacea Remy is one of the plant species used by the Bolivian population for the treatment of urinary infections. This study aimed to identify the extract, fractions, and compounds responsible for the antibacterial and anti-inflammatory activities of B. coriacea leaves. Bioguided isolation of compounds with antibacterial and anti-inflammatory activities was carried out by measuring the antibacterial effect against specific pathogenic microbial strains, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, and Serratia marcescens, and the inhibition of NF-κB in RM-2 and MM.14Ov cells. Bioassay-guided isolation led to the isolation and characterisation of (4aR,4bS,5 S,6aS,6bS,9aR,10aS,10bS)-6b-glycoloyl-5-hydroxy-4a,6a-dimethyl-8-propyl-4a,4b,5,6,6a,6b,9a,10,10a,10b,11,12-dodecahydro-2H-naphtho [2',1':4,5] indeno [1,2-d][1,3] dioxol-2-one (1), 3-[3-(2-dimethylaminoethyl)-1H-indol-5-yl]-N-(4-methoxybenzyl) acrylamide (2), and (1β,11β,12α)-1,11,12-trihydroxy-11,20-epoxypicrasa-3,13(21)-diene-2,16-dione (3) by nuclear magnetic resonance and mass spectroscopy. All compounds showed antibacterial activity with minimum inhibitory concentration values of 11.64–11.81, 0.17–0.19, and 0.34–0.36 µM, respectively, on the tested strains, while the positive control, ofloxacin, had a minimum inhibitory concentration of 27.66 µM. Finally, all the compounds showed NF-κB inhibitory activity with IC50 values of 11.25–11.34, 0.15–0.16, and 0.33–0.36 µM, respectively, in all cell lines, while the positive control, celastrol, had an IC50 of 7.96 µM. Thus, this study managed to isolate and evaluate for the first time the pharmacological potential of three compounds present in the leaves of B. coriacea with antibacterial and anti-inflammatory activities.

Referencias bibliográficas

  • S T Chou, (2016), J Ethnopharmacol, 194, pp. 617, 10.1016/j.jep.2016.10.059
  • L Grigoryan, (2014), J Am Med Assoc, 312, pp. 1677, 10.1001/jama.2014.12842
  • V Steenkamp, (2006), J Ethnopharmacol, 103, pp. 71, 10.1016/j.jep.2005.07.007
  • A L Flores-Mireles, (2015), Nat Rev Microbiol, 13, pp. 269, 10.1038/nrmicro3432
  • M Karlsson, (2012), BMC Microbiol, 12, pp. 1, 10.1186/1471-2180-12-15
  • T J Hannan, (2010), PLoS Pathog, 6, pp. 29, 10.1371/journal.ppat.1001042
  • L Chen, (2018), Oncotarget, 9, pp. 7204, 10.18632/oncotarget.23208
  • J T Purves, (2016), Am J Physiol Ren Physiol, 311, pp. F653, 10.1152/ajprenal.00607.2015
  • H Zhang, (2015), Cell Biosci, 5, pp. 1, 10.1186/s13578-015-0056-4
  • T Lawrence, (2009), Cold Spring Harb Perspect Biol, 1, pp. 1, 10.1101/cshperspect.a001651
  • S Grover, (2011), Ther Adv Urol, 3, pp. 19, 10.1177/1756287211398255
  • R Medzhitov, (2007), Nature, 449, pp. 819, 10.1038/nature06246
  • S Das, (2020), Futur J Pharm Sci, 6, pp. 64, 10.1186/s43094-020-00086-2
  • G Shaheen, (2019), Clin Exp Pharmacol Physiol, 46, pp. 613, 10.1111/1440-1681.13092
  • M A Morales, (2015), Rev Fitoter, 15, pp. 37
  • R W Bussmann, (2016), J Ethnopharmacol, 193, pp. 76, 10.1016/j.jep.2016.07.074
  • D M De Lucca, (2006), Utasan Utjir Qollanaka. Medicinas junto a nuestra casa
  • N Y Paniagua-Zambrana, (2020), Buddleja americana L. Buddleja coriacea J. Rémy Scrophulariaceae. In: Paniagua-Zambrana NY, Bussmann RW, editors. Ethnobotany of the Andes, pp. 385
  • G B Siñani, (2009), Determinacion de la actividad antiinflamatoria en interaccion de extractos de la planta Kiswara (Buddleja coriácea Rémy) con Dexametasona, mediante los ensayos de edema plantar y auricular en modelo murino [dissertation]
  • Å Ryrfeld, (1979), J Steroid Biochem, 10, pp. 317, 10.1016/0022-4731(79)90259-0
  • T A Barf, (1996), J Med Chem, 39, pp. 4717, 10.1021/jm9604890
  • M Ishibashi, (1984), Bull Chem Soc Jpn, 57, pp. 2885, 10.1246/bcsj.57.2885
  • H Morita, (1990), Chem Lett, 19, pp. 749, 10.1246/cl.1990.749
  • A R Bilia, (2002), J Pharm Biomed Anal, 30, pp. 321, 10.1016/S0731-7085(02)00279-0
  • C Deborde, (2019), Metabolomics, 15, pp. 1–12, 10.1007/s11306-019-1488-3
  • S K Chauthe, (2012), Phytochem Anal, 23, pp. 689, 10.1002/pca.2375
  • A A Adedapo, (2009), BMC Complement Altern Med, 6, pp. 1–8
  • C Y Chen, (2012), J Microbiol Immunol Infect, 45, pp. 228, 10.1016/j.jmii.2011.11.007
  • O M Cristea, (2017), Curr Heal Sci J, 43, pp. 137
  • A Y Mensah, (2001), J Ethnopharmacol, 77, pp. 219, 10.1016/S0378-8741(01)00297-5
  • P Wang, (2013), BMC Immunol, 14, pp. 1–9, 10.1186/1471-2172-14-7
  • Y Zhang, (2001), Am J Respir Cell Mol Biol, 25, pp. 196, 10.1165/ajrcmb.25.2.4211
  • L Apaza Ticona, (2021), J Ethnopharmacol, 268, pp. 113668, 10.1016/j.jep.2020.113668
  • W Bououden, (2020), J Drug Deliv Ther, 10, pp. 68, 10.22270/jddt.v10i3-s.4165
  • X L Yang, (2014), Nat Prod Res, 28, pp. 1432, 10.1080/14786419.2014.909418
  • Z Lin, (2012), Toxicol Sci, 126, pp. 114, 10.1093/toxsci/kfr339
  • A M Barrette, (2016), Am J Respir Cell Mol Biol, 5, pp. 623, 10.1165/rcmb.2016-0068OC
  • J C Bayiha, (2020), Molecules, 25, pp. 4882, 10.3390/molecules25214882
  • H Sheridan, (2009), Bioorganic Med Chem Lett, 19, pp. 5927, 10.1016/j.bmcl.2009.08.060
  • L Apaza Ticona, (2021), Nat Prod Res, 35, pp. 4698, 10.1080/14786419.2019.1710700