Anti-inflammatory and Anti-arthritic Activities of Aqueous Extract and Flavonoids from Tripodanthus acutifolius Leaves in Mice Paw Oedema

  1. Luis Apaza Ticona 13
  2. Andreea Madalina Serban 4
  3. Daly Apaza Ticona 2
  4. Karla Slowing 1
  1. 1 Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Madrid, Spain
  2. 2 Clin & Gen SRL Laboratory, La Paz, Bolivia
  3. 3 Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Madrid, Spain
  4. 4 Maria Sklodowska Curie University Hospital for Children, Constantin Brancoveanu Boulevard, Bucharest, Romania
Revista:
Planta Medica International Open

ISSN: 2509-9264 2509-6656

Año de publicación: 2021

Volumen: 8

Número: 02

Páginas: e43-e55

Tipo: Artículo

DOI: 10.1055/A-1471-8947 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Planta Medica International Open

Resumen

Tripodanthus acutifolius, commonly known as Jamillo, is an herbal remedy used in traditional Andean medicine to treat joint problems, such as sprains, dislocations, and rheumatic pain. This study aimed to evaluate the in vitro and in vivo anti-inflammatory and anti-arthritic activity of the aqueous extract and isolated compounds of T. acutifolius. A bioguided phytochemical analysis based on NMR/MS was performed to identify the compounds of the aqueous extract from T. acutifolius. The anti-inflammatory and anti-arthritic activity were evaluated by measuring inflammatory parameters (TNF-α, C-reactive protein, and fibrinogen) in murine models. The chemical structure determination led to the identification of four flavonoids: (E)-2’,4’-dihydroxy-6’-methoxy-chalcone (1), 6,2’,4’-trimethoxyflavone (2), 5,3’,4’-trihydroxy-6,7,8-trimethoxyflavone (3), and 5,4’-dihydroxy-6,7,8-trimethoxyflavone (4). All compounds inhibited the production of TNF-α in the RAW 264.7 cell line, with IC50 values of 0.78, 1.43, 5.73, and 9.71 μM, respectively. In addition, all flavonoids decreased the levels of TNF-α, C-reactive protein, and fibrinogen at a concentration of 5 mg/kg in murine models. Our research shows that these compounds isolated from T. acutifolius have anti-inflammatory and anti-arthritic properties, providing scientific evidence for the traditional use of this plant species.

Referencias bibliográficas

  • A P Croft, (2019), Nature, 570, pp. 246, 10.1038/s41586-019-1263-7
  • L Apaza Ticona, (2020), J Ethnopharmacol, 268, pp. 113668, 10.1016/j.jep.2020.113668
  • D V Kuprash, (2016), Biochemistry, 81, pp. 1237
  • I B McInnes, (2011), N Engl J Med, 365, pp. 2205, 10.1056/NEJMra1004965
  • J S Smolen, (2016), Lancet, 388, pp. 2023, 10.1016/S0140-6736(16)30173-8
  • R Liu-Bryan, (2013), Curr Rheumatol Rep, 15, pp. 323, 10.1007/s11926-013-0323-5
  • P Isomäki, (1997), Ann Med, 29, pp. 499, 10.3109/07853899709007474
  • H Matsuno, (2002), Rheumatology (Oxford), 41, pp. 329, 10.1093/rheumatology/41.3.329
  • C Popa, (2007), J Lipid Res, 48, pp. 751, 10.1194/jlr.R600021-JLR200
  • H Zelová, (2013), Inflamm Res, 62, pp. 641, 10.1007/s00011-013-0633-0
  • N Saidenberg-Kermanac’h, (2004), Bone, 35, pp. 1200, 10.1016/j.bone.2004.07.004
  • R N Maini, (1995), Clin Exp Immunol, 101, pp. 207, 10.1111/j.1365-2249.1995.tb08340.x
  • V K Bournia, (2017), Mod Rheumatol, 27, pp. 559, 10.1080/14397595.2016.1232332
  • E A Moelants, (2013), Immunol Cell Biol, 91, pp. 393, 10.1038/icb.2013.15
  • H Yamanaka, (2015), Endocr Metab Immune Disord Drug Targets, 15, pp. 129, 10.2174/1871530315666150316121808
  • H Radner, (2015), Wien Med Wochenschr, 165, pp. 3, 10.1007/s10354-015-0344-y
  • C Downey, (2016), Int J Rheum Dis, 19, pp. 536, 10.1111/1756-185X.12659
  • M Stevenson, (2016), Health Technol Assess, 20, pp. 1, 10.3310/hta20350
  • P Vashisht, (2017), Expert Opin Biol Ther, 17, pp. 989, 10.1080/14712598.2017.1340453
  • W Dixon, (2011), J Am Med Assoc, 306, pp. 2380, 10.1001/jama.2011.1705
  • P K Verma, (2012), Curr Top Med Chem, 12, pp. 1422, 10.2174/156802612801784425
  • B N Nayak, (2016), J Complement Integr Med, 13, pp. 1, 10.1515/jcim-2015-0024
  • A T Paul, (2006), Drug Discov Today, 11, pp. 725, 10.1016/j.drudis.2006.06.002
  • F Folmer, (2009), Biochem Pharmacol, 78, pp. 592, 10.1016/j.bcp.2009.05.009
  • D Saggese, (1950), Yerbas Medicinales Argentinas: breves apuntes de las propiedades de las mismas e indicaciones para su uso., pp. 65
  • C B Alice, (1991), J Ethnopharmacol, 35, pp. 165, 10.1016/0378-8741(91)90069-P
  • V Muñoz, (2000), J Ethnopharmacol, 71, pp. 123, 10.1016/S0378-8741(99)00191-9
  • M J Macia, (2005), J Ethnopharmacol, 97, pp. 337, 10.1016/j.jep.2004.11.022
  • M Justo-Chipana, (2015), Ecol Boliv, 50, pp. 66
  • J R Soberón, (2007), Bol Latinoam Caribe Plant Med Aromaticas, 6, pp. 276
  • J R Soberón, (2010), Mol Med Med Chem, 21, pp. 88
  • J M Grüner, (2012), Rev Jovens Pesqui Santa Cruz do Sul, 1, pp. 9
  • L Apaza Ticona, (2019), J Ethnopharmacol, 242, pp. 112036, 10.1016/j.jep.2019.112036
  • FK M Chan, (2013), Methods Mol Biol, 979, pp. 65, 10.1007/978-1-62703-290-2_7
  • J A Arnott, (2012), Expert Opin Drug Discov, 10, pp. 863, 10.1517/17460441.2012.714363
  • S Ahmad, (2006), Eur J Pharmacol, 538, pp. 188, 10.1016/j.ejphar.2006.03.070
  • A Takahashi, (2011), Life Sci, 89, pp. 337, 10.1016/j.lfs.2011.06.027
  • J C Fehrenbacher, (2012), Curr Protoc Pharmacol, 56, pp. 5.4.1, 10.1002/0471141755.ph0504s56
  • S Mateen, (2016), Clin Chim Acta, 455, pp. 161, 10.1016/j.cca.2016.02.010
  • L D Kumar, (2016), Biomed Pharmacother, 79, pp. 52, 10.1016/j.biopha.2016.02.001
  • K McNamee, (2015), Eur J Pharmacol, 759, pp. 278, 10.1016/j.ejphar.2015.03.047
  • M L Ferrándiz, (1991), Agents Actions, 32, pp. 283, 10.1007/BF01980887
  • V Tena Pérez, (2020), Synthesis and biological screening of a library of macamides as TNF-α inhibitors, pp. 1196
  • A Abd-Allah, (2018), Iran J Basic Med Sci, 21, pp. 97
  • A Clauss, (1957), Acta Haematol, 17, pp. 237, 10.1159/000205234
  • B B Newbould, (1963), Br J Pharmacol, 21, pp. 127