17 Single Central Nervous System Neurons in Culture

  1. Lerma, Juan
  2. Morales, Miguel
  3. Vicente López, María de los Ángeles
Libro:
Current Topics in Developmental Biology

ISSN: 0070-2153

Año de publicación: 1997

Páginas: 293-302

Tipo: Capítulo de Libro

DOI: 10.1016/S0070-2153(08)60509-8 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

This chapter describes how to prepare microcultures of hippocampal cells essentially free of glial cells. This culture system consists in seeding immature neurons on islands of permissive substrate, in such a way that they grow in physical isolation from other neurons. It results in microislands containing just one or a few neurons that facilitate the study of synaptic transmission under controlled perfusion conditions. It includes some examples of the activity of neurons grown under these microculture conditions. Growing neurons in culture has been crucial in understanding many of the properties of nervous system activity at the cellular and molecular levels. Indeed, the knowledge of neuronal development, plasticity, gene expression, neurotoxicity, pharmacology, and the like has greatly improved with the use of neuronal cultures. Therefore, with a minimal equipment requirement, cell microculture offers the possibility to dissect out synaptic interactions that are difficult to study in situ. Among other advantages, this culture system allows for rapid changes in the concentration of added drugs, and it lacks polysynaptic activity.

Referencias bibliográficas

  • Banker, (1991)
  • Bekkers, (1991), Proc. Natl. Acad. Sci. U.S.A., 88, pp. 7834, 10.1073/pnas.88.17.7834
  • Brewer, (1993), J. Neurosci. Res., 35, pp. 516, 10.1002/jnr.490350513
  • Chien, (1991), Biophys. J., pp. 697, 10.1016/S0006-3495(91)82099-9
  • Furshpan, (1976), Proc. Natl. Acad. Sci. U.S.A., 73, pp. 4225, 10.1073/pnas.73.11.4225
  • Gu, (1993), Eur. J. Pharmacol., 235, pp. 51, 10.1016/0014-2999(93)90819-4
  • Huettner, (1988), J. Neurosci., 8, pp. 160, 10.1523/JNEUROSCI.08-01-00160.1988
  • Johnson, (1994), Neuron, 12, pp. 433, 10.1016/0896-6273(94)90283-6
  • Johnson, (1995), Neuroscience, 67, pp. 609, 10.1016/0306-4522(95)00010-G
  • Landis, (1976), Proc. Natl. Acad. Sci. U.S.A., 73, pp. 4220, 10.1073/pnas.73.11.4220
  • Lerma, (1997), Trends Neurosci., 20, pp. 9, 10.1016/S0166-2236(96)20055-4
  • LiesiTrenkner, (1992), J. Neurosci. Res., 33, pp. 170, 10.1002/jnr.490330122
  • Lübke, (1996), J. Neurosci., 16, pp. 3209, 10.1523/JNEUROSCI.16-10-03209.1996
  • Mennerick, (1995), J. Neurophysiol., 73, pp. 320, 10.1152/jn.1995.73.1.320
  • Mennerick, (1994), Nature, 368, pp. 59, 10.1038/368059a0
  • Rosenmund, (1993), Science, 263, pp. 754, 10.1126/science.7901909
  • Segal, (1991), J. Neurophysiol., 65, pp. 761, 10.1152/jn.1991.65.4.761
  • Segal, (1994), J. Neurophysiol., 72, pp. 1874, 10.1152/jn.1994.72.4.1874
  • Segal, (1990), J. Neurophysiol., 64, pp. 1390, 10.1152/jn.1990.64.5.1390
  • Tong, (1994), Neuron, 12, pp. 51, 10.1016/0896-6273(94)90151-1
  • Tong, (1995), Science, 267, pp. 1510, 10.1126/science.7878472
  • Van der Loos, (1972), Brain Res., 48, pp. 355, 10.1016/0006-8993(72)90189-8