OCT Imaging in Murine Models of Alzheimer’s Disease in a Systematic Review: Findings, Methodology and Future Perspectives

  1. Sánchez-Puebla, Lidia 1
  2. López-Cuenca, Inés 112
  3. Salobrar-García, Elena 112
  4. Ramírez, Ana I. 112
  5. Fernández-Albarral, José A. 12
  6. Matamoros, José A. 11
  7. Elvira-Hurtado, Lorena 1
  8. Salazar, Juan J. 112
  9. Ramírez, José M. 112
  10. de Hoz, Rosa 112
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  2. 2 Hospital Clínico San Carlos de Madrid
    info

    Hospital Clínico San Carlos de Madrid

    Madrid, España

    ROR https://ror.org/04d0ybj29

Revista:
Biomedicines

ISSN: 2227-9059

Año de publicación: 2024

Volumen: 12

Número: 3

Páginas: 528

Tipo: Artículo

DOI: 10.3390/BIOMEDICINES12030528 GOOGLE SCHOLAR lock_openDocta Complutense editor

Otras publicaciones en: Biomedicines

Resumen

The murine models of Alzheimer’s disease (AD) have advanced our understanding of the pathophysiology. In vivo studies of the retina using optical coherence tomography (OCT) have complemented histological methods; however, the lack of standardisation in OCT methodologies for murine models of AD has led to significant variations in the results of different studies. A literature search in PubMed and Scopus has been performed to review the different methods used in these models using OCT and to analyse the methodological characteristics of each study. In addition, some recommendations are offered to overcome the challenges of using OCT in murine models. The results reveal a lack of consensus on OCT device use, retinal area analysed, segmentation techniques, and analysis software. Although some studies use the same OCT device, variations in other parameters make the direct comparison of results difficult. Standardisation of retinal analysis criteria in murine models of AD using OCT is crucial to ensure consistent and comparable results. This implies the application of uniform measurement and segmentation protocols. Despite the absence of standardisation, OCT has proven valuable in advancing our understanding of the pathophysiology of AD.

Información de financiación

Financiadores

Referencias bibliográficas

  • (2021, August 11). World Health Organisation Dementia. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia.
  • Selkoe, (2003), Annu. Rev. Neurosci., 17, pp. 489, 10.1146/annurev.ne.17.030194.002421
  • Walker, (2020), Free Neuropathol., 1, pp. 31
  • Pimplikar, (2009), Int. J. Biochem. Cell Biol., 41, pp. 1261, 10.1016/j.biocel.2008.12.015
  • Dubois, (2016), Alzheimer’s Dement., 12, pp. 292, 10.1016/j.jalz.2016.02.002
  • Villemagne, (2013), Lancet Neurol., 12, pp. 357, 10.1016/S1474-4422(13)70044-9
  • Peters, (2007), Nat. Rev. Genet., 8, pp. 58, 10.1038/nrg2025
  • Sasaguri, (2022), Front. Neurosci., 16, pp. 807473, 10.3389/fnins.2022.807473
  • Volland, S., Esteve-Rudd, J., Hoo, J., Yee, C., and Williams, D.S. (2015). A Comparison of Some Organizational Characteristics of the Mouse Central Retina and the Human Macula. PLoS ONE, 10.
  • Sterratt, D.C., Lyngholm, D., Willshaw, D.J., and Thompson, I.D. (2013). Standard Anatomical and Visual Space for the Mouse Retina: Computational Reconstruction and Transformation of Flattened Retinae with the Retistruct Package. PLoS Comput. Biol., 9.
  • Lavail, (1979), J. Comp. Neurol., 188, pp. 245, 10.1002/cne.901880204
  • Jeon, (1998), J. Neurosci., 18, pp. 8936, 10.1523/JNEUROSCI.18-21-08936.1998
  • Zhang, (2022), Ageing Res. Rev., 77, pp. 101590, 10.1016/j.arr.2022.101590
  • Salobrar-García, E., de Hoz, R., Ramírez, A.I., López-Cuenca, I., Rojas, P., Vazirani, R., Amarante, C., Yubero, R., Gil, P., and Pinazo-Durán, M.D. (2019). Changes in Visual Function and Retinal Structure in the Progression of Alzheimer’s Disease. PLoS ONE, 14.
  • Rojas, (2014), Ophthalmology, 121, pp. 1149, 10.1016/j.ophtha.2013.12.023
  • Lad, E.M., Mukherjee, D., Stinnett, S.S., Cousins, S.W., Potter, G.G., Burke, J.R., Farsiu, S., and Whitson, H.E. (2018). Evaluation of Inner Retinal Layers as Biomarkers in Mild Cognitive Impairment to Moderate Alzheimer’s Disease. PLoS ONE, 13.
  • Trebbastoni, (2016), Neurosci. Lett., 629, pp. 165, 10.1016/j.neulet.2016.07.006
  • Majeed, (2021), Front. Aging Neurosci., 13, pp. 574, 10.3389/fnagi.2021.720167
  • Chan, (2019), Ophthalmology, 126, pp. 497, 10.1016/j.ophtha.2018.08.009
  • Ngolab, (2019), Neurol. Ther., 8, pp. 57, 10.1007/s40120-019-00173-4
  • Gupta, (2021), Prog. Retin. Eye Res., 82, pp. 100899, 10.1016/j.preteyeres.2020.100899
  • Kim, (2021), Neurophotonics, 8, pp. 035002, 10.1117/1.NPh.8.3.035002
  • Cabrera DeBuc, D., Somfai, G.M., Ranganathan, S., Tátrai, E., Ferencz, M., and Puliafito, C.A. (2009). Reliability and Reproducibility of Macular Segmentation Using a Custom-Built Optical Coherence Tomography Retinal Image Analysis Software. J. Biomed. Opt., 14.
  • Byun, (2021), JAMA Ophthalmol., 139, pp. 548, 10.1001/jamaophthalmol.2021.0320
  • Suh, (2023), Ann. Biomed. Eng., 51, pp. 2708, 10.1007/s10439-023-03365-0
  • Kim, (2022), EPMA J., 13, pp. 367, 10.1007/s13167-022-00292-3
  • Jankowsky, (2017), Mol. Neurodegener., 12, pp. 89, 10.1186/s13024-017-0231-7
  • Ferguson, L.R., Grover, S., Dominguez, J.M., Balaiya, S., and Chalam, K.V. (2014). Retinal Thickness Measurement Obtained with Spectral Domain Optical Coherence Tomography Assisted Optical Biopsy Accurately Correlates with Ex Vivo Histology. PLoS ONE, 9.
  • Fischer, M.D., Huber, G., Beck, S.C., Tanimoto, N., Muehlfriedel, R., Fahl, E., Grimm, C., Wenzel, A., Remé, C.E., and van de Pavert, S.A. (2009). Noninvasive, in Vivo Assessment of Mouse Retinal Structure Using Optical Coherence Tomography. PLoS ONE, 4.
  • Gloesmann, (2003), Investig. Ophthalmol. Vis. Sci., 44, pp. 1696, 10.1167/iovs.02-0654
  • Strouthidis, (2010), Investig. Ophthalmol. Vis. Sci., 51, pp. 1464, 10.1167/iovs.09-3984
  • Ochakovski, G.A., and Fischer, M.D. Phenotyping of Mouse Models with OCT. In Methods in Molecular Biology; Humana, New York, NY, USA, 2019; Volume 1834, pp. 285–291, ISBN 9781493986699.
  • Yokoyama, (2022), Front. Mol. Neurosci., 15, pp. 912995, 10.3389/fnmol.2022.912995
  • Chishti, (2001), J. Biol. Chem., 276, pp. 21562, 10.1074/jbc.M100710200
  • Buccarello, (2017), Oncotarget, 8, pp. 83038, 10.18632/oncotarget.19886
  • Saito, (2018), Clin. Exp. Neuroimmunol., 9, pp. 211, 10.1111/cen3.12475
  • Medina, (2021), Front. Aging Neurosci., 12, pp. 625642, 10.3389/fnagi.2020.625642
  • Saito, (2014), Nat. Neurosci., 17, pp. 661, 10.1038/nn.3697
  • Vandenabeele, (2021), Acta Neuropathol. Commun., 9, pp. 6, 10.1186/s40478-020-01102-5
  • Jankowsky, (2004), Hum. Mol. Genet., 13, pp. 159, 10.1093/hmg/ddh019
  • Georgevsky, (2019), Transl. Neurodegener., 8, pp. 30, 10.1186/s40035-019-0170-z
  • Harper, (2020), Neurophotonics, 7, pp. 015006, 10.1117/1.NPh.7.1.015006
  • Oddo, (2003), Neuron, 39, pp. 409, 10.1016/S0896-6273(03)00434-3
  • Chiquita, (2019), Alzheimer’s Res. Ther., 11, pp. 90, 10.1186/s13195-019-0542-8
  • Song, (2020), Sci. Rep., 10, pp. 7912, 10.1038/s41598-020-64827-2
  • Gardner, (2020), Transl. Vis. Sci. Technol., 9, pp. 18, 10.1167/tvst.9.5.18
  • Ferreira, (2021), Aging, 13, pp. 9433, 10.18632/aging.202916
  • Serranho, (2022), Front. Aging Neurosci., 14, pp. 832195, 10.3389/fnagi.2022.832195
  • Batista, (2023), Front. Aging Neurosci., 15, pp. 232, 10.3389/fnagi.2023.1161847
  • Oakley, (2006), J. Neurosci., 26, pp. 10129, 10.1523/JNEUROSCI.1202-06.2006
  • Lim, (2020), Front. Neurosci., 14, pp. 862, 10.3389/fnins.2020.00862
  • Matei, N., Leahy, S., Blair, N.P., Burford, J., Rahimi, M., and Shahidi, M. (2022). Retinal Vascular Physiology Biomarkers in a 5XFAD Mouse Model of Alzheimer’s Disease. Cells, 11.
  • Fialová, S., Augustin, M., Glösmann, M., Himmel, T., Rauscher, S., Gröger, M., Pircher, M., Hitzenberger, C.K., and Baumann, B. (2016). Polarization Properties of Single Layers in the Posterior Eyes of Mice and Rats Investigated Using High Resolution Polarization Sensitive Optical Coherence Tomography. Biomed. Opt. Express, 7.
  • Gardner, M.R., Katta, N., Rahman, A.S., Rylander, H.G., and Milner, T.E. (2018). Design Considerations for Murine Retinal Imaging Using Scattering Angle Resolved Optical Coherence Tomography. Appl. Sci., 8.
  • Augustin, (2018), Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Volume 11039 LNCS, pp. 310
  • Srinivasan, P.P., Heflin, S.J., Izatt, J.A., Arshavsky, V.Y., and Farsiu, S. (2014). Automatic Segmentation of up to Ten Layer Boundaries in SD-OCT Images of the Mouse Retina with and without Missing Layers Due to Pathology. Biomed. Opt. Express, 5.
  • Ronneberger, (2015), Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Volume 9351, pp. 234
  • Chiu, (2010), Opt. Express, 18, pp. 19413, 10.1364/OE.18.019413
  • Mitchell, (2015), Annu. Rev. Anim. Biosci., 3, pp. 283, 10.1146/annurev-animal-022114-110829
  • Dutta, (2016), Life Sci., 152, pp. 244, 10.1016/j.lfs.2015.10.025
  • Sasaguri, (2017), EMBO J., 36, pp. 2473, 10.15252/embj.201797397
  • Kwart, (2019), Neuron, 104, pp. 256, 10.1016/j.neuron.2019.07.010
  • Oddo, (2003), Neurobiol. Aging, 24, pp. 1063, 10.1016/j.neurobiolaging.2003.08.012
  • Jawhar, (2012), Neurobiol. Aging, 33, pp. 196.e29, 10.1016/j.neurobiolaging.2010.05.027
  • Eimer, (2013), Mol. Neurodegener., 8, pp. 2, 10.1186/1750-1326-8-2
  • Bracko, (2019), Nat. Neurosci., 22, pp. 413, 10.1038/s41593-018-0329-4
  • Majumdar, (2021), Magn. Reson. Med., 86, pp. 405, 10.1002/mrm.28709
  • Lanoiselée, H.M., Nicolas, G., Wallon, D., Rovelet-Lecrux, A., Lacour, M., Rousseau, S., Richard, A.C., Pasquier, F., Rollin-Sillaire, A., and Martinaud, O. (2017). APP, PSEN1, and PSEN2 Mutations in Early-Onset Alzheimer Disease: A Genetic Screening Study of Familial and Sporadic Cases. PLoS Med., 14.
  • Citron, (1992), Nature, 360, pp. 672, 10.1038/360672a0
  • Lichtenthaler, (1999), Proc. Natl. Acad. Sci. USA, 96, pp. 3053, 10.1073/pnas.96.6.3053
  • Nilsberth, (2001), Nat. Neurosci., 4, pp. 887, 10.1038/nn0901-887
  • Liu, X., Shen, M., Huang, S., Leng, L., Zhu, D., and Lu, F. (2014). Repeatability and Reproducibility of Eight Macular Intra-Retinal Layer Thicknesses Determined by an Automated Segmentation Algorithm Using Two SD-OCT Instruments. PLoS ONE, 9.
  • Terry, L., Cassels, N., Lu, K., Acton, J.H., Margrain, T.H., North, R.V., Fergusson, J., White, N., and Wood, A. (2016). Automated Retinal Layer Segmentation Using Spectral Domain Optical Coherence Tomography: Evaluation of Inter-Session Repeatability and Agreement between Devices. PLoS ONE, 11.
  • Matlach, (2014), Investig. Ophthalmol. Vis. Sci., 55, pp. 6536, 10.1167/iovs.14-15072
  • Sturm, (2012), Graefes Arch. Clin. Exp. Ophthalmol., 250, pp. 279, 10.1007/s00417-011-1811-9
  • Domínguez-Vicent, A., Brautaset, R., and Venkataraman, A.P. (2019). Repeatability of Quantitative Measurements of Retinal Layers with SD-OCT and Agreement between Vertical and Horizontal Scan Protocols in Healthy Eyes. PLoS ONE, 14.
  • Ctori, I., and Huntjens, B. (2015). Repeatability of Foveal Measurements Using Spectralis Optical Coherence Tomography Segmentation Software. PLoS ONE, 10.
  • Sohn, (2016), Proc. Natl. Acad. Sci. USA, 113, pp. E2655, 10.1073/pnas.1522014113
  • Ferreira, (2022), Sci. Rep., 12, pp. 13667, 10.1038/s41598-022-18113-y
  • Son, T., Alam, M., Toslak, D., Wang, B., Lu, Y., and Yao, X. (2018). Functional Optical Coherence Tomography of Neurovascular Coupling Interactions in the Retina. J. Biophotonics, 11.
  • Kim, (2019), Sci. Rep., 9, pp. 16685, 10.1038/s41598-019-53082-9
  • Ma, G., Son, T., Kim, T.H., and Yao, X. (2021). In Vivo Optoretinography of Phototransduction Activation and Energy Metabolism in Retinal Photoreceptors. J. Biophotonics, 14.
  • Dysli, (2015), Transl. Vis. Sci. Technol., 4, pp. 9, 10.1167/tvst.4.4.9
  • Gende, (2023), IEEE J. Biomed. Health Inf., 27, pp. 5483, 10.1109/JBHI.2023.3313392
  • Alber, (2023), Alzheimer’s Dement., 20, pp. 728, 10.1002/alz.13529
  • Lindovsky, J., Palkova, M., Symkina, V., Raishbrook, M.J., Prochazka, J., and Sedlacek, R. (2023). OCT and ERG Techniques in High-Throughput Phenotyping of Mouse Vision. Genes, 14.
  • Ferguson, L.R., Dominguez, J.M., Balaiya, S., Grover, S., and Chalam, K.V. (2013). Retinal Thickness Normative Data in Wild-Type Mice Using Customized Miniature SD-OCT. PLoS ONE, 8.
  • Veitch, (2021), Alzheimer’s Dement., 18, pp. 824, 10.1002/alz.12422