Perturbation of ATP6V0A1 as a Driver and Druggable Target for Renal Proximal Tubular Cellular Injury in Nephropathic Cystinosis

  1. Sur, Swastika
  2. Kerwin, Maggie
  3. Pineda, Silvia
  4. Sansanwal, Poonam
  5. Sigdel, Tara K.
  6. Sirota, Marina
  7. Sarwal, Minnie M.
Revista:
BioRxiv

Año de publicación: 2022

Tipo: Artículo

DOI: 10.1101/2022.05.13.491826 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

Understanding the unique susceptibility of the human kidney to pH dysfunction and injury in cystinosis is paramount to developing new therapies to preserve renal function. Renal proximal tubular epithelial cells (RPTECs) and fibroblasts isolated from patients with cystinosis were transcriptionally profiled. Lysosomal fractionation, immunoblotting, confocal microscopy, intracellular pH, TEM, mitochondrial stress test, and membrane integrity assays were performed for validation. CRISPR, CTNS -/- RPTECs were generated. Alterations in cell stress, pH, autophagic turnover, and mitochondrial energetics highlighted key changes in the vacuolar (V)-ATPases in patient-derived and CTNS-/- RPTECs. ATP6V0A1 was significantly downregulated in cystinosis and highly co-regulated with loss of CTNS. Correction of ATP6V0A1 rescued cell stress and mitochondrial function. Treatment of CTNS -/- RPTECs with antioxidants astaxanthin (ATX) induced ATP6V0A1 expression and improved autophagosome turnover and mitochondrial integrity.In conclusion, our exploratory transcriptional and in vitro cellular and functional studies confirm that loss of cystinosin in RPTECs, results in a reduction in ATP6V0A1 expression, with changes in intracellular pH, mitochondrial integrity, mitochondrial function, and autophagosome-lysosome clearance. The novel findings are ATP6V0A1’s role in cystinosis-associated renal pathology and among other antioxidants, ATX specifically upregulated ATP6V0A1, improved autophagosome turnover or reduced autophagy and mitochondrial integrity. This is a pilot study highlighting a novel mechanism of tubular injury in cystinosis and requires further study in animal models to clarify its utility in clinical settings.

Referencias bibliográficas

  • 10.1002/(SICI)1098-1004(199912)14:6<454::AID-HUMU2>3.0.CO;2-H
  • Fuller M , Meikle PJ , Hopwood JJ . Epidemiology of lysosomal storage diseases: an overview. Fabry disease: perspectives from 5 years of FOS: Oxford PharmaGenesis; 2006.
  • 10.1101/gr.10.2.165
  • 10.1542/peds.102.6.e69
  • (2009), Biochim Biophys Acta, 4, pp. 684
  • 10.1186/s13256-022-03379-7
  • 10.1093/emboj/20.21.5940
  • 10.1038/ng0498-319
  • 10.1093/hmg/8.13.2507
  • 10.1203/00006450-200001000-00007
  • 10.1038/nrneph.2016.182
  • 10.1186/s13023-016-0426-y
  • 10.1007/s00467-010-1627-6
  • (2021), International journal of molecular sciences, 22
  • 10.1681/ASN.2019070712
  • 10.15252/emmm.202013067
  • 10.1681/ASN.2019090956
  • 10.1159/000495270
  • 10.1007/s10545-016-9919-z
  • 10.1074/mcp.M116.063867
  • 10.1007/s00467-012-2227-4
  • 10.4161/auto.6.7.13099
  • (2020), Cell death discovery, 6
  • 10.1080/15548627.2018.1446625
  • 10.1128/MCB.00417-13
  • 10.1681/ASN.2009040383
  • 10.1093/hmg/ddt617
  • 10.1681/ASN.2013060577
  • (2020), JCI insight, 5
  • 10.1021/jf991106k
  • 10.3390/md12010128
  • 10.1016/j.cbpc.2006.12.008
  • 10.3390/md13042105
  • 10.1038/s41598-021-86146-w
  • 10.1186/s12967-015-0388-1
  • 10.1152/ajprenal.1993.265.6.F839
  • 10.1007/BF01152292
  • 10.7326/0003-4819-147-4-200708210-00006
  • 10.1038/s41596-018-0103-9
  • 10.1152/physrev.00045.2003
  • 10.1113/expphysiol.2013.073809
  • 10.1002/emmm.201201527
  • 10.1074/jbc.M116.764076
  • (2019), Front Endocrinol (Lausanne, 10
  • 10.1159/000331445
  • 10.1086/302509
  • 10.1152/ajprenal.00277.2021
  • 10.1681/ASN.2014090937
  • 10.1056/NEJMra020552
  • 10.1038/ki.2011.277
  • 10.1016/j.neuroscience.2014.01.001
  • 10.1016/j.abb.2008.03.025
  • 10.1126/science.1207056
  • 10.1038/nature11654
  • 10.1091/mbc.E20-06-0383
  • 10.1016/j.ab.2008.10.007
  • (2017), Frontiers in cell and developmental biology, 5
  • (2014), Biochim Biophys Acta, 4, pp. 461
  • 10.3389/fnins.2020.00742
  • 10.1172/JCI113331
  • 10.1172/JCI111806
  • 10.3164/jcbn.18-47
  • 10.1093/jn/134.12.3225
  • (2018), International journal of molecular sciences, 19
  • 10.3892/mmr.2016.5035
  • 10.1016/j.neulet.2017.03.048
  • (2019), Front Cell Neurosci, 13
  • 10.3390/ijms11125109
  • 10.1016/j.fct.2010.04.002
  • 10.1016/j.intimp.2018.01.011
  • (2016), Mar Drugs, 14
  • 10.1111/j.1471-4159.2008.05743.x
  • 10.1016/j.brainres.2010.08.100
  • 10.1016/j.ejphar.2017.04.008
  • 10.1007/s12192-013-0443-x
  • (2017), Mar Drugs, 15
  • 10.1016/j.jpeds.2004.03.056
  • 10.1007/s00467-014-3018-x
  • 10.1203/PDR.0b013e31809fd9a7
  • 10.2165/00003088-197904030-00003
  • 10.1515/JBCPP.1990.1.1-4.357
  • (2019), 3 Biotech
  • 10.1126/science.157.3794.1321
  • 10.1073/pnas.091062498