Suitability Index for the Placement of Solar Plants Based on Inequality Measurements and on Satellite Images

  1. Trincado, Estrella 2
  2. Vindel, Jose María 1
  1. 1 Ministry of Labour and Social Economy, 28046 Madrid, Spain
  2. 2 Department of Applied Economics, Structure and History, Faculty of Economics and Business, Campus de Somosaguas, University Complutense of Madrid, 28223 Madrid, Spain
Revista:
Remote Sensing
  1. Estrella Trincado
  2. José María Vindel

ISSN: 2072-4292

Año de publicación: 2024

Volumen: 16

Número: 6

Páginas: 1039

Tipo: Artículo

DOI: 10.3390/RS16061039 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Remote Sensing

Resumen

he selection of a certain location for the placement of a solar facility depends on the solar resource availability, which is generally assessed though exceedance probabilities. However, the choice of the specific exceedance probability is arbitrary and the assessment will be different depending on the choice taken. Furthermore, exceedance probabilities do not reflect seasonal variability, which affects radiation availability. Therefore, in this work we present a new index, the suitability index based on Theil (SIT), which allows us to assess with a single value the degree of suitability of a site for installing a solar plant. Obtained from the Theil index, it considers the availability of the resource and its seasonal variability, based as it is on the proportion of the given radiation in each month. As we will see, the new index is clearly more sensitive to the amount of radiation expressed in terms of the 50th percentile than to the variability, as given by the interquartile range. This is a quality to be pondered since scarcity of radiation will always be a greater disadvantage for a solar installation than high variability. The results obtained in the study, grounded in the application of satellite images, show that the index adequately reflects the radiation characteristics in the study area. The territory is broken into areas associated with such characteristics through a cluster analysis, so that geographical and economic elements can be considered when choosing the final location for a solar installation. Furthermore, the new index may include the effects of energy storage during the months in which a certain demand is exceeded.

Referencias bibliográficas

  • World Bank Group (2017). Solar Resource and Photovoltaic Potential of Indonesia, World Bank Group. Available online: http://documents.worldbank.org/curated/en/729411496240730378/Solar-resource-and-photovoltaic-potential-of-Indonesia.
  • World Bank Group (2017). Solar Resource and Photovoltaic Potential of Myanmar, World Bank Group. Available online: http://documents.worldbank.org/curated/en/509371496240201777/Solar-resource-and-photovoltaic-power-potential-of-Myanmar.
  • Suehrcke, (1988), Sol. Energy, 40, pp. 413, 10.1016/0038-092X(88)90096-5
  • Olseth, (1984), Sol. Energy, 33, pp. 533, 10.1016/0038-092X(84)90008-2
  • Skartveit, (1992), Sol. Energy, 49, pp. 477, 10.1016/0038-092X(92)90155-4
  • Stein, J.S., Hansen, C.W., and Reno, M.J. (2012, January 13–17). The Variability Index: A New and Novel Metric for Quantifying Irradiance and PV Output Variability. Proceedings of the World Renewable Energy Forum, Denver, CO, USA.
  • Peerlings, E. (2019). Cloud Gazing and Catching the Sun’s Rays: Quantifying Cloud Caused Variability, In Solar Irradiance. [Master’s Thesis, Wageningen University].
  • Dobos, A., Gilman, P., and Kasberg, M. (2012, January 13–17). P50/P90 analysis for solar energy systems using the system advisor model. Proceedings of the World Renewable Energy Forum, Denver, CO, USA.
  • Vindel, (2021), J. Clean. Prod., 321, pp. 128976, 10.1016/j.jclepro.2021.128976
  • Ratings, F. (2023, November 01). Rating Criteria for Solar Power Projects, Utility-Scale Photovoltaic and Concentrating Solar Power. Fitch Ratings. Available online: www.fitchratings.com.
  • Vignola, (2013), Solar Energy Forecasting and Resource Assessment, Volume 131, pp. 97, 10.1016/B978-0-12-397177-7.00005-X
  • Gueymard, C., and Wilcox, S.M. (2009, January 11–16). Spatial and temporal variability in the solar resource: Assessing the value of short-term measurements at potential solar power plant sites. Proceedings of the Solar Conference 2009, Buffalo, NY, USA.
  • (2016), Renew. Energy, 86, pp. 375, 10.1016/j.renene.2015.08.004
  • Polo, (2020), Sol. Energy, 201, pp. 469, 10.1016/j.solener.2020.03.040
  • Fernández-Peruchena, C.M., Polo, J., Martín, L., and Mazorra, L. (2020). Site-Adaptation of modelled solar radiation data: The site adapt procedure. Remote Sens., 12.
  • Hoyer-Klick, C., Beyer, H.G., Dumortier, D., Schroedter Homscheidt, M., Wald, L., Martinoli, M., Schillings, C., Gschwind, B., Menard, L., and Gaboardi, E. (2009, January 15–18). MESoR e management and exploitation of solar resource knowledge. Proceedings of the solarPACES, Berlin, Germany.
  • Vignola, (2007), Sol. Energy, 81, pp. 768, 10.1016/j.solener.2006.10.003
  • Zelenka, (1999), Theor. Appl. Climatol., 62, pp. 199, 10.1007/s007040050084
  • Cano, (1986), Sol. Energy, 37, pp. 631, 10.1016/0038-092X(86)90104-0
  • Moser, (1983), Meteorol. Rundsch., 36, pp. 33
  • Gautier, (1980), J. Appl. Meteorol., 19, pp. 1005, 10.1175/1520-0450(1980)019<1005:ASPMTE>2.0.CO;2
  • Yuzer, (2003), Ain Shams Eng. J., 14, pp. 10205
  • López, M., Aler, R., Galván, I.M., Rodríguez, F.J., and Pozo, A.D. (2003). Improving Solar Radiation Nowcasts by Blending Data-Driven, Satellite-Images-Based and All-Sky-Imagers-Based Models Using Machine Learning Techniques. Remote Sens., 15.
  • Verbois, (2023), Sol. Energy, 258, pp. 175, 10.1016/j.solener.2023.04.037
  • Oliveti, (2000), Renew. Energy, 19, pp. 235, 10.1016/S0960-1481(99)00037-3
  • Dohse, (1985), J. Politics Soc., 14, pp. 115, 10.1177/003232928501400201
  • Bischoff, (2016), J. Bus. Econ., 86, pp. 85
  • Harrouni, (2009), Chaos Solit. Fractals, 41, pp. 1520, 10.1016/j.chaos.2008.06.016
  • Bertok, (2020), J. Clean. Prod., 244, pp. 118520, 10.1016/j.jclepro.2019.118520
  • Strongin, (1991), Chic. Fed. Lett., 43, pp. 1
  • Libra, (2023), Sol. Energy, 259, pp. 229, 10.1016/j.solener.2023.04.063
  • Dong, (2020), Renew. Sustain. Energy Rev., 131, pp. 110009, 10.1016/j.rser.2020.110009
  • Olczak, (2022), Energy Sustain. Dev., 70, pp. 160, 10.1016/j.esd.2022.07.016
  • Markowitz, H. (1991). Portfolio Selection: Efficient Diversification of Investments, Blackwell.
  • Pfeifroth, U., Kothe, S., Müller, R., Trentmann, J., Hollmann, R., Fuchs, P., and Werscheck, M. (2023, March 01). Surface Radiation Data Set—Heliosat (SARAH)—Edition 2, Satellite Application Facility on Climate Monitoring. Available online: https://wui.cmsaf.eu/safira/action/viewDoiDetails?acronym=SARAH_V002.
  • CM-SAF (2023, March 01). Validation Report Meteosat Solar Surface Radiation and Effective Cloud Albedo Climate Data Record SARAH-2. Available online: https://www.cmsaf.eu/SharedDocs/Literatur/document/2016/saf_cm_dwd_val_meteosat_hel_2_1_pdf.html.
  • CM-SAF (2023, March 01). Algorithm Theoretical Baseline Document Meteosat Solar Surface Radiation and Effective Cloud Albedo Climate Data Records—Heliosat SARAH-2. Available online: https://wui.cmsaf.eu/safira/action/viewProduktSearch.
  • Levy, (2020), Crit. Q., 62, pp. 15, 10.1111/criq.12528
  • Robicheck, (1996), J. Financ., 21, pp. 727
  • Copeland, D.E., and Weston, J.F. (1983). Financial Theory and Corporate Policy, Addison Wesley.
  • Altimir, O., Crivelli, A., and Piñera, S. (2024, February 02). Análisis de Descomposición. Una Generalización del Método de Theil, Development Research Center del Banco Mundial and Comisión Económica para América Latina. Available online: https://hdl.handle.net/11362/32365.
  • Gini, C. (1936). On the Measure of Concentration with Special Reference to Income and Statistics, Colorado College Publication.
  • Theil, H. (1972). Statistical Decomposition Analysis: With Applications in the Social and Administrative Sciences, Studies in Mathematical and Managerial Economics, North-Holland Publishing.
  • Theil, (1974), Rev. Econ. Stat., 56, pp. 552, 10.2307/1924471
  • Chotikapanich, (2008), Modeling Income Distributions and Lorenz Curves, Economic Studies in Equality, Social Exclusion and Well-Being, Volume 5, pp. 271
  • Shorrocks, (1980), Econometrica, 48, pp. 613, 10.2307/1913126
  • Theil, H. (1967). Economics and Information Theory, North-Holland Pub. Co.
  • Sammut, C., and Webb, G.I. (2011). Encyclopedia of Machine Learning, Springer.
  • Davies, (1979), IEEE Trans. Pattern Anal. Mach. Intell., PAMI-1, pp. 224, 10.1109/TPAMI.1979.4766909
  • Rousseeuw, (1987), J. Comput. Appl. Math, 20, pp. 53, 10.1016/0377-0427(87)90125-7
  • Walsh, (2003), Environ. Resour. Econ., 24, pp. 313, 10.1023/A:1023625519092
  • Lankoski, (2008), Eur. Rev. Agric. Econ., 35, pp. 519, 10.1093/erae/jbn040
  • Von Thünen, J. (2009). The Isolated State in Relation to Agriculture and Political Economy, Palgrave Macmillan.