Integral use of brewery wastes as carbon and nitrogen sources for the bioproduction of succinic acid

  1. Escanciano, Itziar A.
  2. Blanco, Ángeles
  3. Santos, Victoria E.
  4. Ladero, Miguel
Revista:
Biomass Conversion and Biorefinery

ISSN: 2190-6815 2190-6823

Año de publicación: 2024

Tipo: Artículo

DOI: 10.1007/S13399-024-05615-0 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Biomass Conversion and Biorefinery

Resumen

Circular bioeconomy is one of the major socio-economic objectives for the twenty-first century, which includes the use of biomass waste and its transformation through environmentally friendly processes into biorefinery building blocks. Among these compounds, succinic acid (SA) obtained by fermentation stands out. This work demonstrates the feasibility of using beer bagasse and spent brewer’s yeast as carbon and nitrogen sources for the bioproduction of SA with Actinobacillus succinogenes. The use of a progressive enzymatic treatment liberated simple monosaccharides and peptides that were used by the microorganism, in a subsequent fermentation. Compared to the use of commercial xylose and yeast extract, the used of beer wastes obtained better yields (0.77 g g −1) and selectivity (76%), though with a slightly lower productivity (0.15 g L −1 h −1). Finally, an unstructured non-segregated kinetic model was successfully fitted, facilitating the future performance of bioreactor design, techno-economic analysis, scaling of the process, or design of a control system.

Información de financiación

Referencias bibliográficas

  • Size, Dental Implants Market and DIMSG (2018) Share & trends analysis report by product (titanium implants, zirconium implants), by region (North America, Europe, Asia Pacific, Latin America, MEA), and segment forecasts, 2018–2024. Pers Med Mark Anal By Prod Segm Forecast To 2022
  • TBOE (2021) European beer trends - beer statistics 2021. 1–36
  • Pokrivčák J, Supeková SC, Lančarič D et al (2019) Global trends in brewing iIndustry. J Food Nutr Res 58:63–74
  • Puligundla P, Mok C, Park S (2020) Advances in the valorization of spent brewer’s yeast. Innov Food Sci Emerg Technol 62:102350. https://doi.org/10.1016/j.ifset.2020.102350
  • Karlović A, Jurić A, Ćorić N et al (2020) By-products in the malting and brewing industries-re-usage possibilities. Fermentation 6:1–17. https://doi.org/10.3390/FERMENTATION6030082
  • ENV/ES/000160 L (2017) New strategies for improving the sustainability of breweries: full waste recovery for aquaculture feed. In: Eur. Com. LIFE Public Database. https://webgate.ec.europa.eu/life/publicWebsite/index.cfm?fuseaction=search.dspPage&n_proj_id=6266. Accessed 26 Mar 2023
  • European Commission (2021) New strategies for improving the sustainability of breweries: full waste recovery for aquaculture feed (LIFE16 ENV/ES/000160). 1–11
  • Rachwał K, Waśko A, Gustaw K, Polak-Berecka M (2020) Utilization of brewery wastes in food industry. PeerJ 8:1–28. https://doi.org/10.7717/peerj.9427
  • Emmanuel JK, Nganyira PD, Shao GN (2022) Evaluating the potential applications of brewers’ spent grain in biogas generation, food and biotechnology industry: a review. Heliyon 8:e11140. https://doi.org/10.1016/j.heliyon.2022.e11140
  • Zeko-Pivač A, Habschied K, Kulisic B et al (2023) Valorization of spent brewer’s yeast for the production of high-value products, materials, and biofuels and environmental application. Fermentation 9:208. https://doi.org/10.3390/fermentation9030208
  • Esteban J, Ladero M (2018) Food waste as a source of value-added chemicals and materials: a biorefinery perspective. Int J Food Sci Technol 53:1095–1108. https://doi.org/10.1111/ijfs.13726
  • (FAO) F and AO of the UN FAOSTAT Data. https://www.fao.org/faostat/en/#data. Accessed 10 Jan 2023
  • Baeyens A, Goffin T (2015) Resolution adopted by the General Assembly on 25 September 2015. Eur J Health Law 22:508–516. https://doi.org/10.1163/15718093-12341375
  • Teigiserova DA, Hamelin L, Thomsen M (2019) Review of high-value food waste and food residues biorefineries with focus on unavoidable wastes from processing. Resour Conserv Recycl 149:413–426. https://doi.org/10.1016/j.resconrec.2019.05.003
  • Werpy T, Petersen G (2004) Top value added chemicals from biomass: volume I--results of screening for potential candidates from sugars and synthesis gas (No. DOE/GO-102004–1992). Natl. Renew. Energy Lab., Golden, CO
  • Dienst S, Onderzoek L (2015) | Strategic thinking in sustainable energy From the Sugar Platform to biofuels and biochemicals Final report for the European Commission Directorate-General Energy Consorzio per la Ricerca e la Dimostrazione sulle Energie Rinnovabili (RE-CORD)
  • Escanciano IA, Wojtusik M, Esteban J et al (2022) Modeling the succinic acid bioprocess: a review. Fermentation 8:368
  • Oreoluwa Jokodola E, Narisetty V, Castro E et al (2022) Process optimisation for production and recovery of succinic acid using xylose-rich hydrolysates by Actinobacillus succinogenes. Bioresour Technol 344:126224. https://doi.org/10.1016/j.biortech.2021.126224
  • Mancini E, Dickson R, Fabbri S et al (2022) Economic and environmental analysis of bio-succinic acid production: fFrom established processes to a new continuous fermentation approach with in-situ electrolytic extraction. Chem Eng Res Des 179:401–414. https://doi.org/10.1016/j.cherd.2022.01.040
  • Pateraki C, Patsalou M, Vlysidis A et al (2016) Actinobacillus succinogenes: advances on succinic acid production and prospects for development of integrated biorefineries. Biochem Eng J 112:285–303
  • Ferone M, Raganati F, Olivieri G, Marzocchella A (2019) Bioreactors for succinic acid production processes. Crit Rev Biotechnol 39:571–586. https://doi.org/10.1080/07388551.2019.1592105
  • Liu X, Zhao G, Sun S et al (2022) Biosynthetic pathway and metabolic engineering of succinic acid. Front Bioeng Biotechnol 10:1–16. https://doi.org/10.3389/fbioe.2022.843887
  • Corona-González RI, Bories A, González-Álvarez V, Pelayo-Ortiz C (2008) Kinetic study of succinic acid production by Actinobacillus succinogenes ZT-130. Process Biochem 43:1047–1053. https://doi.org/10.1016/j.procbio.2008.05.011
  • Escanciano IA, Santos VE, Blanco Á, Ladero M (2023) Bioproduction of succinic acid from potato waste Kinetic modeling. Ind Crops Prod 203:117124. https://doi.org/10.1016/j.indcrop.2023.117124
  • Jiang M, Ma J, Wu M et al (2017) Progress of succinic acid production from renewable resources: metabolic and fermentative strategies. Bioresour Technol 245:1710–1717
  • Wang J, Zeng AP, W, Yuan (2022) Succinic acid fermentation from agricultural wastes: the producing microorganisms and their engineering strategies. Curr Opin Environ Sci Heal 25:100313. https://doi.org/10.1016/j.coesh.2021.100313
  • Narisetty V, Okibe MC, Amulya K et al (2022) Technological advancements in valorization of second generation (2G) feedstocks for bio-based succinic acid production. Bioresour Technol 360:127513. https://doi.org/10.1016/j.biortech.2022.127513
  • Chiang YY, Nagarajan D, Lo YC et al (2021) Succinic acid fermentation with immobilized Actinobacillus succinogenes using hydrolysate of carbohydrate-rich microalgal biomass. Bioresour Technol 342:126014. https://doi.org/10.1016/j.biortech.2021.126014
  • Xu C, Alam MA, Wang Z et al (2021) Co-fermentation of succinic acid and ethanol from sugarcane bagasse based on full hexose and pentose utilization and carbon dioxide reduction. Bioresour Technol 339:125578. https://doi.org/10.1016/j.biortech.2021.125578
  • Indera Luthfi AA, Jahim JM, Harun S et al (2016) Biorefinery approach towards greener succinic acid production from oil palm frond bagasse. Process Biochem 51:1527–1537. https://doi.org/10.1016/j.procbio.2016.08.011
  • Filippi K, Papapostolou H, Alexandri M et al (2022) Integrated biorefinery development using winery waste streams for the production of bacterial cellulose, succinic acid and value-added fractions. Bioresour Technol 343:125989. https://doi.org/10.1016/j.biortech.2021.125989
  • Hijosa-Valsero M, Paniagua-García AI, Díez-Antolínez R (2022) Assessment of vine shoots and surplus grape must for succinic acid bioproduction. Appl Microbiol Biotechnol 106:4977–4994. https://doi.org/10.1007/s00253-022-12063-1
  • Lee JS, Lin CJ, Lee WC et al (2022) Production of succinic acid through the fermentation of Actinobacillus succinogenes on the hydrolysate of Napier grass. Biotechnol Biofuels Bioprod 15:1–11. https://doi.org/10.1186/s13068-022-02106-0
  • Alvarado-Morales M, Gunnarsson IB, Fotidis IA et al (2015) Laminaria digitata as a potential carbon source for succinic acid and bioenergy production in a biorefinery perspective. Algal Res 9:126–132. https://doi.org/10.1016/j.algal.2015.03.008
  • Tan JP, Jahim JM, Wu TY et al (2016) Use of corn steep liquor as an economical nitrogen source for biosuccinic acid production by Actinobacillus succinogenes. IOP Conf Ser Earth Environ Sci 36:6–11. https://doi.org/10.1088/1755-1315/36/1/012058
  • Xi YL, Chen KQ, Dai WY et al (2013) Succinic acid production by Actinobacillus succinogenes NJ113 using corn steep liquor powder as nitrogen source. Bioresour Technol 136:775–779. https://doi.org/10.1016/j.biortech.2013.03.107
  • Cao W, Wang Y, Luo J et al (2018) Succinic acid biosynthesis from cane molasses under low pH by Actinobacillus succinogenes immobilized in luffa sponge matrices. Bioresour Technol 268:45–51
  • Jiang M, Chen K, Liu Z et al (2010) Succinic acid production by Actinobacillus succinogenes using spent brewer’s yeast hydrolysate as a nitrogen source. Appl Biochem Biotechnol 160:244–254
  • Djukić-Vuković A, Mladenović D, Radosavljević M et al (2016) Wastes from bioethanol and beer productions as substrates for l(+) lactic acid production-a comparative study. Waste Manag 48:478–482. https://doi.org/10.1016/j.wasman.2015.11.031
  • Rojas-Pérez LC, Narváez-Rincón PC, Rocha MAM et al (2022) Production of xylose through enzymatic hydrolysis of glucuronoarabinoxylan from brewers’ spent grain. Bioresour Bioprocess 9:105. https://doi.org/10.1186/s40643-022-00594-4
  • Castilla-Archilla J, Papirio S, Lens PNL (2021) Two step process for volatile fatty acid production from brewery spent grain: hHydrolysis and direct acidogenic fermentation using anaerobic granular sludge. Process Biochem 100:272–283. https://doi.org/10.1016/j.procbio.2020.10.011
  • Plaza PE, Coca M, Lucas S et al (2020) Efficient use of brewer’s spent grain hydrolysates in ABE fermentation by Clostridium beijerinkii. Effect of high solid loads in the enzymatic hydrolysis. J Chem Technol Biotechnol 95:2393–2402. https://doi.org/10.1002/jctb.6421
  • Chandel AK, da Silva SS, Singh OV (2011) Detoxification of lignocellulosic hydrolysates for improved bioethanol production. In: Dos Santos Bernardes MA (ed) Chapter 10 in biofuel production-recent developments and prospects, IntechOpen. https://doi.org/10.5772/959
  • López-Linares JC, García-Cubero MT, Lucas S, Coca M (2020) Integral valorization of cellulosic and hemicellulosic sugars for biobutanol production: ABE fermentation of the whole slurry from microwave pretreated brewer’s spent grain. Biomass Bioenergy 135:105524. https://doi.org/10.1016/j.biombioe.2020.105524
  • Escanciano IA, Ladero M, Santos VE (2022) On the succinic acid production from xylose by growing and resting cells of Actinobacillus succinogenes: a comparison. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-022-02943-x
  • Escanciano IA, Ladero M, Santos VE, Blanco Á (2023) Development of a simple and robust kinetic model for the production of succinic acid from glucose depending on different operating conditions. Fermentation 9:222. https://doi.org/10.3390/fermentation9030222
  • Almqvist H, Pateraki C, Alexandri M et al (2016) Succinic acid production by Actinobacillus succinogenes from batch fermentation of mixed sugars. J Ind Microbiol Biotechnol 43:1117–1130
  • Ferone M, Raganati F, Olivieri G et al (2017) Biosuccinic acid from lignocellulosic-based hexoses and pentoses by Actinobacillus succinogenes: characterization of the conversion process. Appl Biochem Biotechnol 183:1465–1477
  • Filippi K, Georgaka N, Alexandri M et al (2021) Valorisation of grape stalks and pomace for the production of bio-based succinic acid by Actinobacillus succinogenes. Ind Crops Prod 168:113578. https://doi.org/10.1016/j.indcrop.2021.113578
  • Corona-González RI, Varela-Almanza KM, Arriola-Guevara E et al (2016) Bagasse hydrolyzates from Agave tequilana as substrates for succinic acid production by Actinobacillus succinogenes in batch and repeated batch reactor. Bioresour Technol 205:15–23
  • Zhang W, Tao Y, Wu M et al (2020) Adaptive evolution improves acid tolerance and succinic acid production in Actinobacillus succinogenes. Process Biochem 98:76–82. https://doi.org/10.1016/j.procbio.2020.08.003
  • Luthfi AAI, Jahim JM, Harun S et al (2018) Kinetics of the bioproduction of succinic acid by actinobacillus succinogenes from oil palm lignocellulosic hydrolysate in a bioreactor. Bioresources 13:8279–8294
  • Salvachúa D, Mohagheghi A, Smith H et al (2016) Succinic acid production on xylose-enriched biorefinery streams by Actinobacillus succinogenes in batch fermentation. Biotechnol Biofuels 9:28
  • Ercole A, Raganati F, Salatino P, Marzocchella A (2021) Continuous succinic acid production by immobilized cells of Actinobacillus succinogenes in a fluidized bed reactor: Entrapment in alginate beads. Biochem Eng J 169:107968. https://doi.org/10.1016/j.bej.2021.107968
  • Kim SY, Park SO, Yeon JY, Chun GT (2021) Development of a cell-recycled continuous fermentation process for enhanced production of succinic acid by high-yielding mutants of Actinobacillus succinogenes. Biotechnol Bioprocess Eng 26:125–136. https://doi.org/10.1007/s12257-020-0295-z
  • Bradfield MFA, Nicol W (2016) Continuous succinic acid production from xylose by Actinobacillus succinogenes. Bioprocess Biosyst Eng 39:233–244. https://doi.org/10.1007/s00449-015-1507-3
  • Salma A, Djelal H, Abdallah R et al (2021) Platform molecule from sustainable raw materials; case study succinic acid. Brazilian J Chem Eng 38:215–239