Análisis de la reacción fisiológica cerebral del usuario de realidad virtual a través de la encefalografía (EEG)

  1. Casas Arias, Miguel 1
  2. Cerdán Martínez, Victor 1
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Journal:
Comunicación & métodos

ISSN: 2659-9538

Year of publication: 2023

Issue Title: Transdisciplinarity in Communication Research Methodologies

Volume: 5

Issue: 2

Pages: 19-32

Type: Article

DOI: 10.35951/V5I2.196 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Comunicación & métodos

Abstract

The electroencephalogram (EEG) is a very useful tool to analyze the reactions of the brain through the consumption of content linked to the use of virtual reality (VR) technology. Our proposal consists of a neuroscience-based methodology where we explore the effects of VR on users' brain activity. This methodology can provide a valuable method to better understand the functioning of the brain and its relationship to the perception of stimuli elicited by the use of VR. At the same time, we believe that neuroscience can inspire and enrich the use of VR in the creation of new artistic forms, entertainment experiences and, in general, as an innovative communication medium exploring new frontiers unknown until now by users and audiences. This research can also have applications in fields such as psychology, neuroscience, psychiatry, and media and entertainment studies, as well as being a valuable tool for content creators, who thus obtain information to decipher consumer tastes. In this way, each specialist in his or her discipline will be able to obtain data that they can apply in a practical way to intervene in their respective fields of operation.

Bibliographic References

  • Andreu-Sánchez, C., & Martín-Pascual, M. Á. (2021). Perception of cuts in different editing styles. Profesional de La Informacion, 30(2). https://doi.org/10.3145/EPI.2021.MAR.06
  • Seth, A. K., Suzuki, K., & Critchley, H. D. (2012). An Interoceptive Predictive Coding Model of Conscious Presence. Nombre de la Revista, Volumen(Número), https://doi.org/10.3389/fpsyg.2011.00395
  • Barrett, L. F., Mesquita, B., Ochsner, K. N., & Gross, J. J. (2007). The experience of emotion. Annual Review of Psychology, 58, 373–403. https://doi.org/10.1146/ANNUREV.PSYCH.58.110405.085709
  • Carbonell, F., Galán, L., Valdés, P., Worsley, K., Biscay, R. J., Díaz-Comas, L., Bobes, M. A., & Parra, M. (2004). Random Field–Union Intersection tests for EEG/MEG imaging. NeuroImage, 22(1), 268–276. https://doi.org/10.1016/J.NEUROIMAGE.2004.01.020
  • Cha, H. S., Chang, W. Du, Shin, Y. S., Jang, D. P., & Im, C. H. (2015). EEG-based neurocinematics: challenges and prospects. Brain-Computer Interfaces, 2(4), 186–192. https://doi.org/10.1080/2326263X.2015.1099091
  • Cheng, W., Wang, X., Zou, J., Li, M., & Tian, F. (2023). A High-Density EEG Study Investigating the Neural Correlates of Continuity Editing Theory in VR Films. Sensors, 23(13), 5886. https://doi.org/10.3390/s23135886
  • Christoforou, C., Christou-Champi, S., Constantinidou, F., & Theodorou, M. (2015). 14-From the eyes and the heart: A novel eye-gaze metric that predicts video preferences of a large audience. Frontiers in Psychology, 6(MAY). https://doi.org/10.3389/fpsyg.2015.00579
  • Diemer, J., Alpers, G. W., Peperkorn, H. M., Shiban, Y., & Mühlberger, A. (2015). The impact of perception and presence on emotional reactions: a review of research in virtual reality. Frontiers in Psychology, 6(JAN), 26–26. https://doi.org/10.3389/FPSYG.2015.00026
  • Dmochowski, J. P., Sajda, P., Dias, J., & Parra, L. C. (2012). Correlated components of ongoing EEG point to emotionally laden attention - a possible marker of engagement? Frontiers in Human Neuroscience, MAY 2012. https://doi.org/10.3389/FNHUM.2012.00112/FULL
  • Evans, A. C., Collins, D. L., Mills, S. R., Brown, E. D., Kelly, R. L., & Peters, T. M. (1993). 3D statistical neuroanatomical models from 305 MRI volumes. 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference, pt 3, 1813–1817. https://doi.org/10.1109/NSSMIC.1993.373602
  • Freeman, D., Garety, P. A., Bebbington, P. E., Smith, B., Rollinson, R., Fowler, D., Kuipers, E., Ray, K., & Dunn, G. (2005). Psychological investigation of the structure of paranoia in a non-clinical population. The British Journal of Psychiatry, 186(5), 427–435. https://doi.org/10.1192/BJP.186.5.427
  • Gallese, V., & Guerra, M. (2022). The Neuroscience of Film (Journal). Projections (New York), 16(1), 1–10. https://doi.org/10.3167/PROJ.2022.160101
  • López, Á. G., Martínez, V. C., Alonso, T. O., Sánchez‐Pena, J. M., & Vergaz, R. (2022a). Emotion elicitation through vibrotactile stimulation as an alternative for deaf and hard of hearing people: an EEG study. Electronics, 11(14), 2196. https://doi.org/10.3390/ELECTRONICS11142196
  • Gautham Krishna, G., Krishna, G., & Bhalaji, N. (2017). 24-Electroencephalography Based Analysis of Emotions Among Indian Film Viewers. Communications in Computer and Information Science, 712, 145–155. https://doi.org/10.1007/978-981-10-5780-9_13
  • Geethanjali, B., Adalarasu, K., Hemapraba, A., Kumar, S. P., & Rajasekeran, R. (2017). Emotion analysis using SAM (Self-Assessment Manikin) scale. Biomedical Research-Tokyo.
  • Golnar-Nik, P., Farashi, S., & Safari, M. S. (2019). The application of EEG power for the prediction and interpretation of consumer decision-making: A neuromarketing study. Physiology and Behavior, 207, 90–98. https://doi.org/10.1016/j.physbeh.2019.04.025
  • Hasson, U., Landesman, O., Knappmeyer, B., Vallines, I., Rubin, N., & Heeger, D. J. (2008). 18b-Neurocinematics: The Neuroscience of Film. Projections, 2(1), 1–26. https://doi.org/10.3167/PROJ.2008.020102
  • He, L., Li, H., Xue, T., Sun, D., Zhu, S., & Ding, G. (2018). Am I in the theater? Usability Study of Live Performance Based Virtual Reality. 10. https://doi.org/10.1145/3281505.3281508
  • Hofmann, S. M., Klotzsche, F., Mariola, A., Nikulin, V. V., Villringer, A., & Gaebler, M. (2021). Decoding subjective emotional arousal from eeg during an immersive virtual reality experience. ELife, 10. https://doi.org/10.7554/ELIFE.64812
  • Ijsselsteijn, W., De Ridder, H., Freeman, J., Avons, S. E., & Bouwhuis, D. (2001). Effects of stereoscopic presentation, image motion, and screen size on subjective and objective corroborative measures of presence. Presence: Teleoperators and Virtual Environments, 10(3), 298–311. https://doi.org/10.1162/105474601300343621
  • Im, C.-H., Lee, J.-H., & Lim, J.-H. (2015). 16-Neurocinematics based on passive BCI: Decoding temporal change of emotional arousal during video watching from multi-channel EEG. 2015 10th Asian Control Conference: Emerging Control Techniques for a Sustainable World, ASCC 2015. https://doi.org/10.1109/ASCC.2015.7244792
  • Jalal, L., & Murroni, M. (2020). On the impact of single and multiple effects on quality of experience for multisensorial TV in smart home. IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, BMSB, 2020-October. https://doi.org/10.1109/BMSB49480.2020.9379734
  • Jäncke, L. (2009). The plastic human brain. Restorative Neurology and Neuroscience, 27(5), 521–538. https://doi.org/10.3233/RNN-2009-0519
  • Khosravi Khorashad, S., & Khosrowabadi, R. (2022). 48-The Impact of the Hitchcockian Suspense Model and Its Associated Directing Style on the Horror Genre: A Neurocinematics Study. Quarterly Review of Film and Video. https://doi.org/10.1080/10509208.2022.2156251
  • Al Lang, P. J. (1985). The cognitive psychophysiology of emotion: Fear and anxiety. In A. H. Tuma & J. D. Maser (Eds.), Anxiety and the anxiety disorders (pp. 131–170). Lawrence Erlbaum Associates, Inc. https://psycnet.apa.org/record/1985-97708-007
  • Lucia, M. J., Revuelta, P., García, Á., Ruiz, B., Vergaz, R., Cerdán, V., & Ortiz, T. (2020). Vibrotactile Captioning of Musical Effects in Audio-Visual Media as an Alternative for Deaf and Hard of Hearing People: An EEG Study. IEEE Access, 8, 190873–190881. https://doi.org/10.1109/ACCESS.2020.3032229
  • Marín‐Morales, J., Llinares, C., Guixeres, J., & Alcañíz, M. (2020). Emotion recognition in immersive virtual reality: From statistics to affective computing. Sensors, 20(18), 5163. https://doi.org/10.3390/s20185163
  • Sánchez, I. M., & Segura, J. (2018). Una perspectiva neurobiológica y comunicacional de la imagen y de la realidad aumentada. La Revista Icono 14, 16(1), 1-21. https://doi.org/10.7195/RI14.V16I1.1102
  • Ortiz Alonso, T., Matías Santos, J., Ortiz Terán, L., Borrego Hernández, M., Poch Broto, J., Alejandro de Erausquin, G., (2015). Differences in Early Stages of Tactile ERP Temporal Sequence (P100) in Cortical Organization during Passive Tactile Stimulation in Children with Blindness and Controls. PLoS ONE, 10(7), 124527. https://doi.org/10.1371/journal.pone.0124527
  • Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1994). Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. International Journal of Psychophysiology, 18(1), 49–65. https://doi.org/10.1016/0167-8760(84)90014-X
  • Slobounov, S. M., Ray, W., Johnson, B., Slobounov, E., & Newell, K. M. (2015). Modulation of cortical activity in 2D versus 3D virtual reality environments: An EEG study. International Journal of Psychophysiology, 95(3), 254-260. https://doi.org/10.1016/j.ijpsycho.2014.11.003
  • Smith, M. (2022). 65J-Triangulation Revisited. Projections, 16(1), 11–24. https://doi.org/10.3167/PROJ.2022.160102
  • Tian, F., Wang, X., Cheng, W., Lee, M., & Jin, Y. (2022). A Comparative Study on the Temporal Effects of 2D and VR Emotional Arousal. Sensors, 22(21), 8491–8491. https://doi.org/10.3390/S22218491
  • Wang, Y., & Wang, Y. (2020). A Neurocinematic Study of the Suspense Effects in Hitchcock’s Psycho. Frontiers in Communication, 5. https://doi.org/10.3389/FCOMM.2020.576840
  • Zhao, G., Zhang, Y., Ge, Y., & Gasbarri, A. (2018). Frontal EEG Asymmetry and Middle Line Power Difference in Discrete Emotions. https://doi.org/10.3389/fnbeh.2018.00225