A detailed 3D MRI brain atlas of the African lungfish Protopterus annectens

  1. Lozano, Daniel 1
  2. López, Jesús M. 1
  3. Chinarro, Adrián 1
  4. Morona, Ruth 1
  5. Moreno, Nerea 1
  1. 1 Department of Cell Biology, Faculty of Biological Sciences, Complutense University, 28040 Madrid, Spain
Revista:
Scientific Reports

ISSN: 2045-2322

Año de publicación: 2024

Volumen: 14

Número: 1

Tipo: Artículo

DOI: 10.1038/S41598-024-58671-X GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Scientific Reports

Resumen

The study of the brain by magnetic resonance imaging (MRI) in evolutionary analyses is still in its incipient stage, however, it is particularly useful as it allows us to analyze detailed anatomical images and compare brains of rare or otherwise inaccessible species, evolutionarily contextualizing possible differences, while at the same time being non-invasive. A good example is the lungfishes, sarcopterygians that are the closest living relatives of tetrapods and thus have an interesting phylogenetic position in the evolutionary conquest of the terrestrial environment. In the present study, we have developed a three-dimensional representation of the brain of the lungfish Protopterus annectens together with a rostrocaudal anatomical atlas. This methodological approach provides a clear delineation of the major brain subdivisions of this model and allows to measure both brain and ventricular volumes. Our results confirm that lungfish show neuroanatomical patterns reminiscent of those of extant basal sarcopterygians, with an evaginated telencephalon, and distinctive characters like a small optic tectum. These and additional characters uncover lungfish as a remarkable model to understand the origins of tetrapod diversity, indicating that their brain may contain significant clues to the characters of the brain of ancestral tetrapods.

Información de financiación

Financiadores

Referencias bibliográficas

  • Brinkmann, H., Venkatesh, B., Brenner, S. & Meyer, A. Nuclear protein-coding genes support lungfish and not the coelacanth as the closest living relatives of land vertebrates. Proc. Natl. Acad. Sci. U. S. A. 101(14), 4900–4905. https://doi.org/10.1073/pnas.0400609101 (2004).
  • Friedman, M., Coates, M. I. & Anderson, P. First discovery of a primitive coelacanth fin fills a major gap in the evolution of lobed fins and limbs. Evol. Dev. 9(4), 329–337. https://doi.org/10.1111/j.1525-142X.2007.00169.x (2007).
  • Betancur-R, R. et al. The tree of life and a new classification of bony fishes. PLoS Curr. https://doi.org/10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288 (2013).
  • Takezaki, N., Figueroa, F., Zaleska-Rutczynska, Z., Takahata, N. & Klein, J. The phylogenetic relationship of tetrapod, coelacanth, and lungfish revealed by the sequences of forty-four nuclear genes. Mol. Biol. Evol. 21(8), 1512–1524. https://doi.org/10.1093/molbev/msh150 (2004).
  • Hallström, B. M. & Janke, A. Gnathostome phylogenomics utilizing lungfish EST sequences. Mol. Biol. Evol. 26(2), 463–471. https://doi.org/10.1093/molbev/msn271 (2009).
  • Chen, M., Zou, M., Yang, L. & He, S. Basal jawed vertebrate phylogenomics using transcriptomic data from Solexa sequencing. PLoS One 7(4), e36256. https://doi.org/10.1371/journal.pone.0036256 (2012).
  • Amemiya, C. T. et al. The African coelacanth genome provides insights into tetrapod evolution. Nature 496(7445), 311–316. https://doi.org/10.1038/nature12027 (2013).
  • Clack, J., Sharp, E. & Long, J. The fossil record of lungfishes. In The Biology of Lungfishes (eds Jørgensen, J. M. & Joss, J.) 1–42 (CRC Press, 2011). https://doi.org/10.1201/b10357-2.
  • Moy-Thomas, J. A. & Miles, R. S. Paleozoic Fishes (Springer, 1971). https://doi.org/10.1007/978-1-4684-6465-8.
  • Lee, J., Alrubaian, J. & Dores, R. M. Are lungfish living fossils? Observation on the evolution of the opioid/orphanin gene family. Gen. Comp. Endocrinol. 148(3), 306–314. https://doi.org/10.1016/j.ygcen.2006.07.010 (2006).
  • Perry, S. F., Wilson, R. J., Straus, C., Harris, M. B. & Remmers, J. E. Which came first, the lung or the breath?. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 129(1), 37–47. https://doi.org/10.1016/s1095-6433(01)00304-x (2001).
  • Icardo, J. M. Lungs and gas bladders: Morphological insights. Acta Histochem. 120(7), 605–612. https://doi.org/10.1016/j.acthis.2018.08.006 (2018).
  • Yamamoto, K., Bloch, S. & Vernier, P. New perspective on the regionalization of the anterior forebrain in Osteichthyes. Dev. Growth Differ. 59(4), 175–187. https://doi.org/10.1111/dgd.12348 (2017).
  • Fulliquet, G. Recherches sur le cerveau du Protopterus annectens (Imprimerie Charles Schuchardt, 1885). https://doi.org/10.13097/archive-ouverte/unige:25099.
  • Wilder, B. The dipnoan brain. Am. Nat. 21, 544–548. https://doi.org/10.1086/274497 (1887).
  • Holmgren, N. & van der Horst, C. J. Contribution to the morphology of the brain of Ceratodus. Acta Zool. 6(1–2), 59–165. https://doi.org/10.1111/j.1463-6395.1925.tb00262.x (1925).
  • Rudebeck, B. Contributions to forebrain morphology in Dipnoi. Acta Zool. 26(1–3), 9–156. https://doi.org/10.1111/j.1463-6395.1945.tb00017.x (1945).
  • Northcutt, R. G. Lungfish neural characters and their bearing on sarcopterygian phylogeny. J. Morph. 190(S1), 277–297. https://doi.org/10.1002/jmor.1051900418 (1986).
  • Nieuwenhuys, R. Lungfishes. In The Central Nervous System of Vertebrates Vol. 2 (eds Nieuwenhuys, R. et al.) 939–1006 (Springer, 1998). https://doi.org/10.1007/978-3-642-18262-4_16.
  • Northcutt, R. G. Understanding vertebrate brain evolution. Integr. Comp. Biol. 42, 743–756. https://doi.org/10.1093/icb/42.4.743 (2002).
  • Collin, S. P. Nervous and sensory systems. In Fish Physiology. Primitive Fishes Vol. 26 (eds Mcenzie, D. et al.) 121–179 (Academic Press, 2007). https://doi.org/10.1016/S1546-5098(07)26003-0.
  • Northcutt, R. G. Telencephalic organization in the spotted African lungfish, Protopterus dolloi: A new cytological model. Brain Behav. Evol. 73, 59–80. https://doi.org/10.1159/000204963 (2009).
  • Northcutt, R. G. The central nervous system of lungfishes. In The Biology of Lungfishes (eds Jørgensen, J. M. & Joss, J.) 393–445 (CRC Press, 2011). https://doi.org/10.1201/B10357-17.
  • González, A. & Northcutt, R. G. An immunohistochemical approach to lungfish telencephalic organization. Brain Behav. Evol. 74(1), 43–55. https://doi.org/10.1159/000229012 (2009).
  • López, J. M. et al. Distribution of orexin/hypocretin immunoreactivity in the brain of the lungfishes Protopterus dolloi and Neoceratodus forsteri. Brain Behav. Evol. 74(4), 302–322. https://doi.org/10.1159/000274978 (2009).
  • González, A., Morona, R., López, J. M., Moreno, N. & Northcutt, R. G. Lungfishes, like tetrapods, possess a vomeronasal system. Front. Neuroanat. 4, 130. https://doi.org/10.3389/fnana.2010.00130 (2010).
  • González, A. & Northcutt, R. G. Functional morphology of the brains of sarcopterygian fishes: Lungfishes and Latimeria. In Encyclopedia of Fish Physiology: From Genome to Environment Vol. 1 (ed. Farrell, A. P.) 46–55 (Academic Press, 2011). https://doi.org/10.1016/B978-0-12-374553-8.00002-2.
  • López, J. M., Domínguez, L., Morona, R., Northcutt, R. G. & González, A. Organization of the cholinergic systems in the brain of two lungfishes, Protopterus dolloi and Neoceratodus forsteri. Brain Struct. Funct. 217(2), 549–576. https://doi.org/10.1007/s00429-011-0341-x (2012).
  • González, A., Morona, R., Moreno, N., Bandín, S. & López, J. M. Identification of striatal and pallidal regions in the subpallium of anamniotes. Brain Behav. Evol. 83(2), 93–103. https://doi.org/10.1159/000357754 (2014).
  • López, J. M. & González, A. Comparative analysis of the serotonergic systems in the CNS of two lungfishes, Protopterus dolloi and Neoceratodus forsteri. Brain Struct. Funct. 220(1), 385–405. https://doi.org/10.1007/s00429-013-0661-0 (2015).
  • López, J. M. & González, A. Organization of the catecholaminergic systems in the brain of lungfishes, the closest living relatives of terrestrial vertebrates. J. Comp. Neurol. 525(14), 3083–3109. https://doi.org/10.1002/cne.24266 (2017).
  • López, J. M., Morona, R. & González, A. Immunohistochemical localization of DARPP-32 in the brain of two lungfishes: Further assessment of its relationship with the dopaminergic system. Brain Behav. Evol. 90(4), 289–310. https://doi.org/10.1159/000481929 (2017).
  • Moreno, N. et al. Comparative analysis of Nkx2.1 and Islet-1 expression in urodele amphibians and lungfishes highlights the pattern of forebrain organization in early tetrapods. Front. Neuroanat. 12, 42. https://doi.org/10.3389/fnana.2018.00042 (2018).
  • Morona, R., López, J. M., Northcutt, R. G. & González, A. Regional chemoarchitecture of the brain of lungfishes based on calbindin D-28K and calretinin immunohistochemistry. J. Comp. Neurol. 526(9), 1457–1497. https://doi.org/10.1002/cne.24422 (2018).
  • López, J. M., Morona, R. & González, A. Pattern of nitrergic cells and fibers organization in the central nervous system of the Australian lungfish, Neoceratodus forsteri (Sarcopterygii: Dipnoi). J. Comp. Neurol. 527(11), 1771–1800. https://doi.org/10.1002/cne.24645 (2019).
  • López, J. M. et al. Pax6 expression highlights regional organization in the adult brain of lungfishes, the closest living relatives of land vertebrates. J. Comp. Neurol. 528(1), 135–159. https://doi.org/10.1002/cne.24744 (2020).
  • Lozano, D. et al. Expression of SATB1 and SATB2 in the brain of bony fishes: What fish reveal about evolution. Brain Struct. Funct. 228(3–4), 921–945. https://doi.org/10.1007/s00429-023-02632-z (2023).
  • Metscher, B. D. MicroCT for comparative morphology: Simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol. 9, 11. https://doi.org/10.1186/1472-6793-9-11 (2009).
  • Betz, O. et al. Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure. J. Microsc. 227(Pt 1), 51–71. https://doi.org/10.1111/j.1365-2818.2007.01785.x (2007).
  • Sharpe, J. et al. Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296(5567), 541–545. https://doi.org/10.1126/science (2002).
  • Prager, R. W., Ijaz, U. Z., Gee, A. H. & Treece, G. M. Three-dimensional ultrasound imaging. Proc. Inst. Mech. Eng. H. 224(2), 193–223. https://doi.org/10.1243/09544119JEIM586 (2010).
  • Kherlopian, A. R. et al. A review of imaging techniques for systems biology. BMC Syst. Biol. 2, 74. https://doi.org/10.1186/1752-0509-2-74 (2008).
  • Clement, A. M., Nysjö, J., Strand, R. & Ahlberg, P. E. Brain—Endocast relationship in the Australian lungfish, Neoceratodus forsteri, elucidated from tomographic data (Sarcopterygii: Dipnoi). PLoS One 10(10), e0141277. https://doi.org/10.1371/journal.pone.0141277 (2015).
  • Challands, T. J., Pardo, J. D. & Clement, A. M. Mandibular musculature constrains brain-endocast disparity between sarcopterygians. R. Soc. Open Sci. 7(9), 200933. https://doi.org/10.1098/rsos.200933 (2020).
  • Clement, A. M. et al. Morphometric analysis of lungfish endocasts elucidates early dipnoan palaeoneurological evolution. eLife 11, e73461. https://doi.org/10.7554/eLife.73461 (2022).
  • Lakhani, D. A., Sabsevitz, D. S., Chaichana, K. L., Quiñones-Hinojosa, A. & Middlebrooks, E. H. Current state of functional MRI in the presurgical planning of brain tumors. Radiol. Imaging Cancer 5(6), e230078. https://doi.org/10.1148/rycan.230078 (2023).
  • Khair, A. M. et al. Clinical application of magnetic resonance elastography in pediatric neurological disorders. Pediatr. Radiol. 53(13), 2712–2722. https://doi.org/10.1007/s00247-023-05779-3 (2023).
  • Sienkiewicz, T. et al. The brain anatomy of the brown bear (Carnivora, Ursus arctos L., 1758) compared to that of other carnivorans: A cross-sectional study using MRI. Front. Neuroanat. 13, 79. https://doi.org/10.3389/fnana.2019.00079 (2019).
  • Johnson, P. J. et al. Stereotactic cortical atlas of the domestic canine brain. Sci. Rep. 10(1), 4781. https://doi.org/10.1038/s41598-020-61665-0 (2020).
  • Vellema, M., Verschueren, J., Van Meir, V. & Van der Linden, A. A customizable 3-dimensional digital atlas of the canary brain in multiple modalities. NeuroImage 57(2), 352–361. https://doi.org/10.1016/j.neuroimage.2011.04.033 (2011).
  • Güntürkün, O., Verhoye, M., De Groof, G. & Van der Linden, A. A 3-dimensional digital atlas of the ascending sensory and the descending motor systems in the pigeon brain. Brain Struct. Funct. 218(1), 269–281. https://doi.org/10.1007/s00429-012-0400-y (2013).
  • De Groof, G. et al. A three-dimensional digital atlas of the starling brain. Brain Struct. Funct. 221(4), 1899–1909. https://doi.org/10.1007/s00429-015-1011-1 (2016).
  • Billings, B. K. et al. A three-dimensional digital atlas of the Nile crocodile (Crocodylus niloticus) forebrain. Brain Struct. Funct. 225(2), 683–703. https://doi.org/10.1007/s00429-020-02028-3 (2020).
  • Hoops, D. et al. A fully segmented 3D anatomical atlas of a lizard brain. Brain Struct. Funct. 226(6), 1727–1741. https://doi.org/10.1007/s00429-021-02282-z (2021).
  • Foss, K. D., Keller, K. A., Kehoe, S. P. & Sutton, B. P. Establishing an MRI-based protocol and atlas of the bearded dragon (Pogona vitticeps) brain. Front. Vet. Sci. 9, 886333. https://doi.org/10.3389/fvets.2022.886333 (2022).
  • Lazcano, I. et al. MRI- and histologically derived neuroanatomical atlas of the Ambystoma mexicanum (axolotl). Sci. Rep. 11(1), 9850. https://doi.org/10.1038/s41598-021-89357-3 (2021).
  • Poirier, C. et al. A three-dimensional MRI atlas of the zebra finch brain in stereotaxic coordinates. NeuroImage 41(1), 1–6. https://doi.org/10.1016/j.neuroimage.2008.01.069 (2008).
  • Yopak, K. E. & Frank, L. R. Brain size and brain organization of the whale shark, Rhincodon typus, using magnetic resonance imaging. Brain Behav. Evol. 74(2), 121–142. https://doi.org/10.1159/000235962 (2009).
  • Ullmann, J. F., Cowin, G., Kurniawan, N. D. & Collin, S. P. A three-dimensional digital atlas of the zebrafish brain. NeuroImage 51(1), 76–82. https://doi.org/10.1016/j.neuroimage.2010.01.086 (2010).
  • Ullmann, J. F., Cowin, G. & Collin, S. P. Magnetic resonance microscopy of the barramundi (Lates calcarifer) brain. J. Morphol. 271(12), 1446–1456. https://doi.org/10.1002/jmor.10887 (2010).
  • Simões, J. M., Teles, M. C., Oliveira, R. F., Van der Linden, A. & Verhoye, M. A three-dimensional stereotaxic MRI brain atlas of the cichlid fish Oreochromis mossambicus. PloS One 7(9), e44086. https://doi.org/10.1371/journal.pone.0044086 (2012).
  • Clark, J. R., Camus, A. C., Comolli, J., Divers, S. J. & Gendron, K. P. MRI of the live fish brain at 3 Tesla: Feasibility, technique and interspecies anatomic variations. Vet. Radiol. Ultrasound 64(1), 75–85. https://doi.org/10.1111/vru.13128 (2023).
  • Moreno, N. & González, A. The non-evaginated secondary prosencephalon of vertebrates. Front. Neuroanat. 5, 12. https://doi.org/10.3389/fnana.2011.00012 (2011).
  • Herculano-Houzel, S. Numbers of neurons as biological correlates of cognitive capability. Curr. Op. Behav. Sci. 16, 1–7. https://doi.org/10.1016/j.cobeha.2017.02.004 (2017).