Sperm Membrane Channels, Receptors and KinematicsUsing Boar Spermatozoa for Drug Toxicity Screening.

  1. Vicente Carrillo, Alejandro
Dirigida por:
  1. Heriberto Rodríguez Martínez Director/a
  2. Karl-Eric Magnusson Director/a
  3. Rudolf Rigler Codirector/a
  4. Vesa Loitto Codirector/a

Universidad de defensa: Linköping University

Fecha de defensa: 11 de noviembre de 2016

Tipo: Tesis

Resumen

Internal fertilization usually implies that a spermatozoon, with intact attributes for zygote formation, passes all hurdles during its transport through the female genitalia and reaches the oocyte. During this journey, millions to billions of other spermatozoa perish. Spermatozoa are highly differentiated motile cells without synthetic capabilities. They generate energy via glycolysis and oxidative phosphorylation to sustain motility and to maintain the stability and functionality of their plasma membrane. In vivo, they spend their short lifespan bathing in female genital tract fluids of different origins, or are in vitro exposed to defined media during diverse sperm handling i.e. extension, cryopreservation, in vitro fertilization, etc. Being excitable cells, spermatozoa respond in vivo to various stimuli during pre-fertilization (capacitation, hyperactivation, oocyte location) and fertilization (acrosome reaction, interaction with the oocyte) events, mediated via diverse membrane ion-conducting channels and ligand-gated receptors. The present Thesis has mapped the presence and reactivity (sperm intactness and kinematics) of selected receptors, water and ion channels in ejaculated boar spermatozoa. The final aim was to find a relevant alternative cell type for in vitro bioassays that could ease the early scrutiny of candidate drugs as well as decreasing our needs for experimental animals according to the 3R principles. Spermatozoa are often extended, cooled and thawed to warrant their availability as fertile gametes for breeding or in vitro testing. Such manipulations stress the cells via osmotic variations and hence spermatozoa need to maintain membrane intactness by controlling the exchange of water and the common cryoprotectant glycerol, via aquaporins (AQPs). Both AQPs-7 and -9 were studied for membrane domain changes in cauda- and ejaculated spermatozoa (un-processed, extended, chilled or frozen-thawed). While AQP-9 maintained location through source and handling, thawing of ejaculated spermatozoa clearly relocated the labelling of AQP-7, thus appearing as a relevant marker for non-empirical studies of sperm cryopreservation. Alongside water, spermatozoa interact with calcium (Ca2+) via the main Ca2+ sperm channel CatSper. Increments in intracellular Ca2+ initiate motility hyperactivation and the acrosome reaction. The four subunits of the CatSper channel were present in boar spermatozoa, mediating changes in sperm motility under in vitro capacitation-inducing conditions (increased extracellular Ca2+ availability and bicarbonate) or challenge by the CatSper antagonists mibefradil and NNC 55-0396. Uterine and oviduct fluids are richest in endogenous opioids as β-endorphins during mating and ovulation. Both μ- and δ- opioid receptors were present in boar spermatozoa modulating sperm motility, as in vitro challenge with known agonists (μ: morphine; δ: DPDPE and κ: U 50488) and antagonists (μ: naloxone; δ: naltrindole and κ: nor-binaltrorphimine) showed that the μ-opioid receptor maintained or increased motility while the δ-opioid receptor mediated decreased motility over time. Finally, boar spermatozoa depicted dose-response effects on sperm kinematics and mitochondrial potential following in vitro challenge with 130 pharmacological drugs and toxic compounds as well as with eight known mito-toxic compounds. In conclusion, boar spermatozoa expressing functional water (AQPs-7 and -9) and ion (CatSper 1-4) channels as well as μ- and δ-opioid receptors are able to adapt to stressful environmental variations, capacitation and pharmacological compounds and drug components. Ejaculated sperm suspensions are easily and painlessly obtained from breeding boars, and are suitable biosensors for in vitro drug-induced testing, complying with the 3R principles of reduction and replacement of experimental animals, during early toxicology screening.