Application of the Lithiation−Borylation Reaction to the Preparation of Enantioenriched Allylic Boron Reagents and Subsequent In Situ Conversion into 1,2,4-Trisubstituted Homoallylic Alcohols with Complete Control over All Elements of Stereochemistry

  1. Martin Althaus 1
  2. Adeem Mahmood 1
  3. José Ramón Suárez 1
  4. Stephen P. Thomas 1
  5. Varinder K. Aggarwal 1
  1. 1 School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K.
Aldizkaria:
Journal of the American Chemical Society

ISSN: 0002-7863 1520-5126

Argitalpen urtea: 2010

Alea: 132

Zenbakia: 11

Orrialdeak: 4025-4028

Mota: Artikulua

DOI: 10.1021/JA910593W GOOGLE SCHOLAR lock_openSarbide irekia editor

Beste argitalpen batzuk: Journal of the American Chemical Society

Laburpena

The reactions of Hoppe’s lithiated carbamates with vinylboranes and boronic esters give allylic boranes/boronic esters, and subsequent addition of aldehydes provides a new route to enantioenriched homoallylic alcohols with high enantiomeric ratios and diastereomeric ratios. Specifically, reactions of sparteine-complexed lithiated carbamates with trans-alkenyl-9-BBN derivatives followed by addition of aldehydes gave (Z)-anti-homoallylic alcohols in greater than 95:5 er and 99:1 dr. However, in the special case of the methyl-substituted lithiated carbamate, diamine-free conditions were required to achieve high selectivity. Reactions of sparteine-complexed lithiated carbamates with (Z)-alkenyl pinacol boronic esters and (E)-alkenyl neopentyl boronic esters gave (E)-syn- and (E)-anti-homoallylic alcohols, respectively, in greater than 96:4 er and 98:2 dr. In these reactions, a Lewis acid (MgBr2 or BF3·OEt2) was required to promote both the 1,2-metalate rearrangement and the addition of the intermediate allylic boronic ester to the aldehyde. This methodology provides a general route to each of the three classes of homoallylic alcohols with high selectivity.

Erreferentzia bibliografikoak

  • aDenmark, S. E. and Almstead, N. G.InModern Carbonyl Chemistry;Otera, J., Ed.Wiley-VCH:Weinheim, Germany, 2000; Chapter 10, p299.
  • bChemler, S. R. and Roush, W. R.InModern Carbonyl Chemistry;Otera, J., Ed.Wiley-VCH:Weinheim, Germany, 2000; Chapter 11, p403.
  • Lachance H., (2008), Organic Reactions, 73
  • Denmark S. E., (2003), Chem. Rev., 103, pp. 2763, 10.1021/cr020050h
  • eRoush, W. R.InStereoselective Synthesis,4thed.Helmchen, G., Hoffman, R. W., Muler, J., and Schaumann, E., Eds.Thieme Verlag:Stuttgart, 1996; Vol. 3, p1410.
  • Hoffmann R. W., (1979), Angew. Chem., Int. Ed. Engl., 18, pp. 306, 10.1002/anie.197903061
  • Hoffmann R. W., (1981), J. Org. Chem., 46, pp. 1309, 10.1021/jo00320a015
  • Hoffmann R. W., (1988), Pure Appl. Chem., 60, pp. 123, 10.1351/pac198860010123
  • Hoffmann R. W., (1990), Pure Appl. Chem., 62, pp. 1993, 10.1351/pac199062101993
  • Brown H. C., (1983), J. Am. Chem. Soc., 105, pp. 2092, 10.1021/ja00345a085
  • Brown H. C., (1986), J. Am. Chem. Soc., 108, pp. 293, 10.1021/ja00262a017
  • Ramachandran P. V., (2002), Aldrichimica Acta, 35, pp. 23
  • Rauniyar V., (2009), J. Org. Chem., 74, pp. 4236, 10.1021/jo900553f
  • Penner M., (2009), J. Am. Chem. Soc., 131, pp. 14216, 10.1021/ja906429c
  • Chen M., (2009), J. Am. Chem. Soc., 131, pp. 14602, 10.1021/ja904599h
  • Kister J., (2009), J. Am. Chem. Soc., 131, pp. 14174, 10.1021/ja905494c
  • Kennedy J. W. J., (2002), J. Am. Chem. Soc., 124, pp. 11586, 10.1021/ja027453j
  • Gravel M., (2004), Synthesis, 8, pp. 1290
  • Carosi L., (2005), Tetrahedron Lett., 46, pp. 8981, 10.1016/j.tetlet.2005.10.115
  • Carosi L., (2007), Angew. Chem., Int. Ed., 46, pp. 5913, 10.1002/anie.200700975
  • Hall D. G., (2007), Synlett, 11, pp. 1644, 10.1055/s-2007-980384
  • fKennedy, J. W. J. and Hall, D. G.InBoronic Acids;Hall, D. G., Ed.Wiley-VCH:Weinheim, Germany, 2005; Chapter 6, p241.
  • Flamme E. F., (2002), J. Am. Chem. Soc., 124, pp. 13644, 10.1021/ja028055j
  • González A. Z., (2009), J. Am. Chem. Soc., 131, pp. 1269, 10.1021/ja808360z
  • Burgos C. H., (2005), J. Am. Chem. Soc., 127, pp. 8044, 10.1021/ja043612i
  • Canales E., (2005), J. Am. Chem. Soc., 127, pp. 11572, 10.1021/ja053865r
  • Lai C., (2005), Org. Lett., 7, pp. 799, 10.1021/ol0476164
  • The 2008 comprehensive review of allylation reaction using allylboron reagents by Hall(1c)cites 49 pages of tabulated individual reactions using an α-substituted allylboron reagent compared to 419 pages of reactions using allylboron reagents without α-substitution.
  • Corey E. J., (1997), Tetrahedron Lett., 38, pp. 37, 10.1016/S0040-4039(96)02249-6
  • Yamamoto Y., (1999), Chem. Lett., pp. 1069, 10.1246/cl.1999.1069
  • Andemichael Y. W., (1992), J. Org. Chem., 57, pp. 796, 10.1021/jo00029a003
  • Wang K. K., (1990), J. Am. Chem. Soc., 112, pp. 4431, 10.1021/ja00167a047
  • Pietruszka J., (2003), Angew. Chem., Int. Ed., 42, pp. 5638, 10.1002/anie.200352210
  • Pietruszka J., (2004), Eur. J. Org. Chem., pp. 5011, 10.1002/ejoc.200400572
  • Strürmer R., (1990), Synlett, pp. 759, 10.1055/s-1990-21242
  • Hoffmann R. W., (1983), Tetrahedron Lett., 24, pp. 3209, 10.1016/S0040-4039(00)88137-X
  • Hoffmann R. W., (1984), Angew. Chem., Int. Ed. Engl., 23, pp. 437, 10.1002/anie.198404371
  • Hoffmann R. W., (1986), Chem. Ber., 119, pp. 2013, 10.1002/cber.19861190622
  • Hoffmann R. W., (1986), Chem. Ber., 119, pp. 1039, 10.1002/cber.19861190324
  • Hoffmann R. W., (1980), J. Organomet. Chem., 195, pp. 137, 10.1016/S0022-328X(00)89998-2
  • Andersen M. W., (1989), Chem. Ber., 122, pp. 1777, 10.1002/cber.19891220925
  • Hoffmann R. W., (1989), Chem. Ber., 122, pp. 1783, 10.1002/cber.19891220926
  • Matteson D. S., (1983), J. Am. Chem. Soc., 105, pp. 2077, 10.1021/ja00345a074
  • Tsai D. J. S., (1983), Organometallics, 2, pp. 236, 10.1021/om00074a006
  • Zschage O., (1989), Angew. Chem., Int. Ed., 28, pp. 69, 10.1002/anie.198900691
  • Hoppe D., (1990), Angew. Chem., Int. Ed. Engl., 29, pp. 1422, 10.1002/anie.199014221
  • Beckmann E., (2004), Synlett, pp. 2275
  • Beckmann E., (2005), Synthesis, pp. 217
  • Thomas S. P., (2009), Chem. Rec., 9, pp. 24, 10.1002/tcr.20168
  • Stymiest J. L., (2007), Angew. Chem., Int. Ed., 46, pp. 7491, 10.1002/anie.200702146
  • Stymiest J. L., (2008), Nature, 456, pp. 778, 10.1038/nature07592
  • Dutheuil G., (2009), Angew. Chem., Int. Ed., 48, pp. 6179, 10.1002/anie.200990177
  • Fang G. Y., (2007), Angew. Chem., Int. Ed., 46, pp. 359, 10.1002/anie.200603659
  • Howells D., (2008), Org. Biomol. Chem., 6, pp. 1185, 10.1039/b718496d
  • Hoppe D., (1990), Angew. Chem., Int. Ed. Engl., 29, pp. 1422, 10.1002/anie.199014221
  • This observation was also seen in the reactions with B-β-trimethylsilylvinyl-9-BBN substrates but to an even greater extent. Full details will be published shortly.
  • Yamamoto Y., (1986), J. Org. Chem., 51, pp. 886, 10.1021/jo00356a026
  • Lachance H., (2003), J. Am. Chem. Soc., 125, pp. 10160, 10.1021/ja036807j
  • Kennedy J. W. J., (2003), Angew. Chem., Int. Ed., 42, pp. 4732, 10.1002/anie.200301632
  • Rauniyar V., (2004), J. Am. Chem. Soc., 126, pp. 4518, 10.1021/ja049446w
  • Rychnovsky S. D., (2000), Org. Lett., 2, pp. 1217, 10.1021/ol005646a
  • Lombardo M., (2000), J. Org. Chem., 65, pp. 8767, 10.1021/jo005633a
  • In CH2Cl2, full conversion of the intermediate allylic boronic ester was observed within 2 h for PhCHO and within 15 h for CyCHO. However, in the same reaction times in Et2O, reactions with PhCHO only reached ∼80% conversion, and CyCHO only reached ∼60% conversion (by1H NMR spectroscopy).
  • Dearden M. J., (2002), J. Am. Chem. Soc., 124, pp. 11870, 10.1021/ja027774v